Ser387
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser387  -  RAD9A (human)

Site Information
sPVLAEDsEGEG___   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449815

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 36 ) , immunoprecipitation ( 3 , 6 , 7 ) , mass spectrometry ( 1 , 2 , 4 , 8 , 9 , 10 , 11 , 12 , 14 , 16 , 18 , 19 , 20 , 22 , 24 , 26 , 27 , 29 , 30 , 31 , 32 , 33 , 34 ) , mutation of modification site ( 3 , 7 , 17 , 28 , 35 , 36 ) , peptide sequencing ( 36 ) , phospho-antibody ( 5 , 28 , 35 ) , western blotting ( 3 , 5 , 6 , 28 , 35 )
Disease tissue studied:
ataxia-telangiectasia ( 35 ) , bone cancer ( 6 ) , breast cancer ( 2 , 8 , 9 , 16 ) , breast ductal carcinoma ( 8 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 , 8 ) , cervical cancer ( 29 ) , cervical adenocarcinoma ( 29 ) , colorectal cancer ( 6 ) , colorectal carcinoma ( 6 ) , leukemia ( 22 ) , acute myelogenous leukemia ( 22 ) , lung cancer ( 11 , 18 ) , non-small cell lung cancer ( 18 ) , non-small cell lung adenocarcinoma ( 11 ) , ovarian cancer ( 8 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Kinases, in vitro:
CK2A1 (human) ( 23 , 28 )
Treatments:
hydroxyurea ( 6 , 35 ) , ionizing_radiation ( 35 ) , nocodazole ( 29 ) , TBCA ( 28 )

Downstream Regulation
Effects of modification on RAD9A:
intracellular localization ( 7 ) , molecular association, regulation ( 3 , 6 , 7 , 23 , 25 , 28 , 35 ) , phosphorylation ( 35 )
Effects of modification on biological processes:
cell cycle regulation ( 35 )
Induce interaction with:
TOPBP1 (human) ( 3 , 6 , 7 , 23 , 25 , 28 , 35 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

3

Takeishi Y, Iwaya-Omi R, Ohashi E, Tsurimoto T (2015) Intramolecular Binding of the Rad9 C Terminus in the Checkpoint Clamp Rad9-Hus1-Rad1 Is Closely Linked with Its DNA Binding. J Biol Chem 290, 19923-32
26088138   Curated Info

4

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

5

Osorio-Zambrano WF, Davey S (2015) Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. PLoS One 10, e0144434
26658951   Curated Info

6

Liu T, et al. (2014) A Divergent Role of the SIRT1-TopBP1 Axis in Regulating Metabolic Checkpoint and DNA Damage Checkpoint. Mol Cell 56, 681-95
25454945   Curated Info

7

Ohashi E, Takeishi Y, Ueda S, Tsurimoto T (2014) Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair (Amst) 21, 1-11
25091155   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

10

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

11

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

12

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

13

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

14

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

15

Kelly R, Davey SK (2013) Tousled-like kinase-dependent phosphorylation of rad9 plays a role in cell cycle progression and g2/m checkpoint exit. PLoS One 8, e85859
24376897   Curated Info

16

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

17

Ueda S, Takeishi Y, Ohashi E, Tsurimoto T (2012) Two serine phosphorylation sites in the C-terminus of Rad9 are critical for 9-1-1 binding to TopBP1 and activation of the DNA damage checkpoint response in HeLa cells. Genes Cells 17, 807-16
22925454   Curated Info

18

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

19

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

20

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

21

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

22

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

23

Rappas M, Oliver AW, Pearl LH (2011) Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res 39, 313-24
20724438   Curated Info

24

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

25

Huo YG, Bai L, Xu M, Jiang T (2010) Crystal structure of the N-terminal region of human Topoisomerase II╬▓ binding protein 1. Biochem Biophys Res Commun 401, 401-5
20858457   Curated Info

26

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

27

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

28

Takeishi Y, et al. (2010) Casein kinase 2-dependent phosphorylation of human Rad9 mediates the interaction between human Rad9-Hus1-Rad1 complex and TopBP1. Genes Cells 15, 761-71
20545769   Curated Info

29

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

30

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

31

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

32

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

33

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

34

Stokes M (2008) CST Curation Set: 3883; Year: 2008; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

35

St Onge RP, Besley BD, Pelley JL, Davey S (2003) A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 278, 26620-8
12734188   Curated Info

36

Roos-Mattjus P, et al. (2003) Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 278, 24428-37
12709442   Curated Info