Ser395
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser395  -  NIPA (human)

Site Information
PGLEVPssPLRKAKR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 478573

In vivo Characterization
Methods used to characterize site in vivo:
flow cytometry ( 56 ) , immunoprecipitation ( 3 , 56 ) , mass spectrometry ( 1 , 2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 57 ) , mass spectrometry (in vitro) ( 55 ) , mutation of modification site ( 56 ) , western blotting ( 56 )
Disease tissue studied:
brain cancer ( 57 ) , glioblastoma ( 57 ) , glioma ( 57 ) , breast cancer ( 9 , 10 ) , breast ductal carcinoma ( 9 ) , HER2 positive breast cancer ( 4 ) , luminal A breast cancer ( 4 ) , luminal B breast cancer ( 4 ) , breast cancer, triple negative ( 4 , 9 ) , cervical cancer ( 36 ) , cervical adenocarcinoma ( 36 ) , leukemia ( 50 , 51 ) , chronic myelogenous leukemia ( 50 , 51 ) , hepatocellular carcinoma, surrounding tissue ( 33 ) , lung cancer ( 7 , 13 , 15 , 22 , 25 ) , non-small cell lung cancer ( 15 ) , non-small cell lung adenocarcinoma ( 7 , 13 , 22 ) , ovarian cancer ( 9 ) , pancreatic ductal adenocarcinoma ( 12 ) , prostate cancer ( 35 , 39 ) , melanoma skin cancer ( 6 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 12 ) , 293 (epithelial) [AT1 (human), transfection] ( 27 ) , 293 (epithelial) ( 40 ) , 293E (epithelial) ( 20 ) , breast ( 4 , 9 ) , Calu 6 (pulmonary) ( 15 ) , CL1-0 (pulmonary) ( 25 ) , CL1-1 (pulmonary) ( 25 ) , CL1-2 (pulmonary) ( 25 ) , CL1-5 (pulmonary) ( 25 ) , DG75 (B lymphocyte) ( 26 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 16 ) , Flp-In T-Rex-293 (epithelial) ( 16 ) , H2009 (pulmonary) ( 15 ) , H2077 (pulmonary) ( 15 ) , H2887 (pulmonary) ( 15 ) , H322M (pulmonary) ( 15 ) , HCC1359 (pulmonary) ( 15 ) , HCC2279 (pulmonary) ( 15 ) , HCC366 (pulmonary) ( 15 ) , HCC4006 (pulmonary) ( 15 ) , HCC78 (pulmonary) ( 15 ) , HCC827 (pulmonary) ( 15 ) , HEK293T (epithelial) ( 3 ) , HeLa (cervical) ( 2 , 8 , 14 , 24 , 37 , 42 , 44 , 49 , 52 , 53 , 56 ) , HeLa S3 (cervical) ( 36 , 48 ) , hepatocyte-liver ( 33 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 10 ) , HMLER ('stem, breast cancer') ( 10 ) , HOP62 (pulmonary) ( 15 ) , HUES-7 ('stem, embryonic') ( 38 ) , HUES-9 ('stem, embryonic') ( 23 ) , Jurkat (T lymphocyte) ( 18 , 19 , 21 , 28 , 29 , 30 , 31 , 32 , 34 , 43 , 45 , 46 , 47 , 54 ) , K562 (erythroid) ( 14 , 37 , 50 , 51 ) , LCLC-103H (pulmonary) ( 15 ) , liver ( 11 ) , LNCaP (prostate cell) ( 35 , 39 ) , LOU-NH91 (squamous) ( 15 ) , lung ( 13 ) , M059K (glial) ( 57 ) , NCI-H1395 (pulmonary) ( 15 ) , NCI-H1568 (pulmonary) ( 15 ) , NCI-H157 (pulmonary) ( 15 ) , NCI-H1648 (pulmonary) ( 15 ) , NCI-H1666 (pulmonary) ( 15 ) , NCI-H2030 (pulmonary) ( 15 ) , NCI-H2172 (pulmonary) ( 15 ) , NCI-H322 (pulmonary) ( 15 ) , NCI-H460 (pulmonary) ( 15 , 41 ) , NCI-H520 (squamous) ( 15 ) , NCI-H647 (pulmonary) ( 15 ) , ovary ( 9 ) , PC9 (pulmonary) ( 7 , 15 ) , PC9-IR (pulmonary) ( 7 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 22 ) , U-1810 (pulmonary) ( 22 ) , Vero E6-S ('epithelial, kidney') ( 1 ) , WM239A (melanocyte) ( 6 )

Upstream Regulation
Kinases, in vitro:
CDK1 (human) ( 55 , 56 )
Treatments:
antibody ( 47 ) , ischemia ( 9 ) , metastatic potential ( 25 ) , nocodazole ( 36 )

Downstream Regulation
Effects of modification on NIPA:
activity, inhibited ( 3 ) , molecular association, regulation ( 56 )
Effects of modification on biological processes:
cell cycle regulation ( 3 , 56 )
Inhibit interaction with:
SKP1A (human) ( 56 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Jones PD, et al. (2016) The Coronary Artery Disease-associated Coding Variant in Zinc Finger C3HC-type Containing 1 (ZC3HC1) Affects Cell Cycle Regulation. J Biol Chem 291, 16318-27
27226629   Curated Info

4

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

5

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

6

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

7

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

8

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

11

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

12

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

13

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

14

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

15

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

16

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

17

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

18

Mulhern D (2011) CST Curation Set: 12713; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif Antibody Cat#: 9601
Curated Info

19

Guo A (2011) CST Curation Set: 12024; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

20

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

21

Guo A (2011) CST Curation Set: 11989; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif Antibody Cat#: 9601
Curated Info

22

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

23

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

24

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

25

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

26

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

27

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

28

Possemato A (2010) CST Curation Set: 10294; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

29

Possemato A (2010) CST Curation Set: 10111; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

30

Possemato A (2010) CST Curation Set: 10138; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

31

Possemato A (2010) CST Curation Set: 9793; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

32

Possemato A (2010) CST Curation Set: 9249; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif Antibody Cat#: 9601
Curated Info

33

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

34

Possemato A (2010) CST Curation Set: 9052; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

35

Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9, 174-8
20044836   Curated Info

36

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

37

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

38

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

39

Zhou J (2009) CST Curation Set: 7216; Year: 2009; Biosample/Treatment: cell line, LNCaP/PDBu; Disease: prostate cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

40

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

41

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

42

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

43

Possemato A (2009) CST Curation Set: 6371; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

44

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

45

Possemato A (2009) CST Curation Set: 6369; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

46

Possemato A (2009) CST Curation Set: 6368; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

47

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

48

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

49

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

50

Stokes M (2008) CST Curation Set: 4390; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

51

Stokes M (2008) CST Curation Set: 4392; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

52

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

53

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

54

Stokes M (2008) CST Curation Set: 3886; Year: 2008; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

55

Blethrow JD, Glavy JS, Morgan DO, Shokat KM (2008) Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci U S A 105, 1442-7
18234856   Curated Info

56

Bassermann F, et al. (2007) Multisite phosphorylation of nuclear interaction partner of ALK (NIPA) at G2/M involves cyclin B1/Cdk1. J Biol Chem 282, 15965-72
17389604   Curated Info

57

Stokes M (2007) CST Curation Set: 2265; Year: 2007; Biosample/Treatment: cell line, M059K/UV; Disease: glioblastoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate Antibody Cat#: 2851
Curated Info