Ser304
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser304  -  p47phox (human)

Site Information
GAPPRRssIRNAHsI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449406

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 14 , 15 ) , flow cytometry ( 2 ) , immunoprecipitation ( 8 ) , mutation of modification site ( 2 , 6 , 8 , 9 , 13 , 14 ) , peptide sequencing ( 15 ) , phospho-antibody ( 3 , 4 , 5 , 7 , 8 , 9 , 10 ) , phosphoamino acid analysis ( 15 ) , phosphopeptide mapping ( 14 , 15 ) , western blotting ( 3 , 4 , 7 , 8 , 9 , 10 )
Disease tissue studied:
leukemia ( 13 ) , chronic myelogenous leukemia ( 13 ) , lung cancer ( 10 )
Relevant cell line - cell type - tissue:
A549 (pulmonary) ( 10 ) , B lymphocyte-blood ( 9 ) , B lymphocyte-spleen ( 14 ) , COS7 (fibroblast) ( 8 ) , HMVEC (endothelial) ( 5 ) , K562 (erythroid) ( 13 ) , MEF (fibroblast) ( 2 ) , microvessel endothelial ( 6 ) , neutrophil ( 14 , 15 ) , neutrophil-blood ( 3 , 4 , 7 ) , SVEC (endothelial) ( 8 )

Upstream Regulation
Regulatory protein:
ANGPT1 (human) ( 5 ) , FPR1 (mouse) ( 4 )
Putative in vivo kinases:
Akt3 (human) ( 2 ) , PKCZ (human) ( 10 )
Kinases, in vitro:
Akt1 (human) ( 11 ) , PKCA (human) ( 12 , 14 ) , PKCB iso2 (human) ( 12 ) , PKCD (human) ( 12 )
Treatments:
calphostin_C ( 10 ) , CL097 ( 7 ) , fMLP ( 15 ) , LPS ( 3 , 10 ) , pansorbin ( 9 ) , phorbol_ester ( 9 , 15 ) , PKC-zeta_inhibitor ( 10 ) , rottlerin ( 10 ) , thymoquinone ( 4 )

Downstream Regulation
Effects of modification on p47phox:
activity, induced ( 12 ) , enzymatic activity, induced ( 2 , 13 ) , intracellular localization ( 10 ) , molecular association, regulation ( 12 , 13 )
Effects of modification on biological processes:
cell growth, induced ( 2 ) , signaling pathway regulation ( 3 )
Induce interaction with:
CYBA (human) ( 12 , 13 )

References 

1

Neehus AL, et al. (2021) Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med 218
34264265   Curated Info

2

Polytarchou C, et al. (2020) Akt3 induces oxidative stress and DNA damage by activating the NADPH oxidase via phosphorylation of p47. Proc Natl Acad Sci U S A 117, 28806-28815
33139577   Curated Info

3

Liu M, et al. (2019) The Prolyl Isomerase Pin1 Controls Lipopolysaccharide-Induced Priming of NADPH Oxidase in Human Neutrophils. Front Immunol 10, 2567
31736979   Curated Info

4

Boudiaf K, et al. (2016) Thymoquinone strongly inhibits fMLF-induced neutrophil functions and exhibits anti-inflammatory properties in vivo. Biochem Pharmacol 104, 62-73
26774451   Curated Info

5

Ghosh CC, et al. (2015) Angiopoietin-1 Requires Oxidant Signaling through p47phox to Promote Endothelial Barrier Defense. PLoS One 10, e0119577
25761062   Curated Info

6

Meijles DN, Fan LM, Howlin BJ, Li JM (2014) Molecular Insights of p47phox Phosphorylation Dynamics in the Regulation of NADPH Oxidase Activation and Superoxide Production. J Biol Chem 289, 22759-70
24970888   Curated Info

7

Makni-Maalej K, et al. (2012) The TLR7/8 Agonist CL097 Primes N-Formyl-Methionyl-Leucyl-Phenylalanine-Stimulated NADPH Oxidase Activation in Human Neutrophils: Critical Role of p47phox Phosphorylation and the Proline Isomerase Pin1. J Immunol 189, 4657-65
23002436   Curated Info

8

Teng L, Fan LM, Meijles D, Li JM (2012) Divergent Effects of p47phox Phosphorylation at S303-4 or S379 on Tumor Necrosis Factor-α Signaling via TRAF4 and MAPK in Endothelial Cells. Arterioscler Thromb Vasc Biol 32, 1488-96
22460559   Curated Info

9

Belambri SA, et al. (2012) Phosphorylation of p47phox is required for receptor-mediated NADPH oxidase/NOX2 activation in Epstein-Barr virus-transformed human B lymphocytes. Am J Blood Res 2, 187-93
23119229   Curated Info

10

Leverence JT, Medhora M, Konduri GG, Sampath V (2011) Lipopolysaccharide-induced cytokine expression in alveolar epithelial cells: role of PKCζ-mediated p47phox phosphorylation. Chem Biol Interact 189, 72-81
20920494   Curated Info

11

Chen Q, et al. (2003) Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol 170, 5302-8
12734380   Curated Info

12

Fontayne A, Dang PM, Gougerot-Pocidalo MA, El-Benna J (2002) Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41, 7743-50
12056906   Curated Info

13

Ago T, Nunoi H, Ito T, Sumimoto H (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J Biol Chem 274, 33644-53
10559253   Curated Info

14

El Benna J, Faust RP, Johnson JL, Babior BM (1996) Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem 271, 6374-8
8626435   Curated Info

15

el Benna J, Faust LP, Babior BM (1994) The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem 269, 23431-6
8089108   Curated Info