Ser401
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser401  -  APPL (mouse)

Site Information
ALEAVtPsPsFQQRH   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449251

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 5 ) , mass spectrometry ( 1 , 2 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 ) , mutation of modification site ( 5 ) , phospho-antibody ( 5 ) , western blotting ( 5 )
Disease tissue studied:
neuroblastoma ( 13 ) , melanoma skin cancer ( 17 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 7 ) , 'muscle, skeletal' ( 5 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 16 ) , brain ( 15 , 18 ) , C2C12 (myoblast) ( 5 ) , heart ( 8 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 3 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 3 ) , HL-1 (myocyte) ( 3 ) , kidney ( 14 ) , liver ( 1 , 5 , 6 , 10 ) , liver [leptin (mouse), homozygous knockout] ( 10 ) , macrophage-peritoneum ( 9 ) , MC3T3-E1 (preosteoblast) ( 2 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 12 ) , N1E-115 (neuron) ( 13 ) , pancreas ( 14 ) , PC-12 (chromaffin) [TrkA (rat), transfection] ( 11 ) , PC-12 (chromaffin) ( 11 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 17 )

Upstream Regulation
Treatments:
adiponectin ( 5 ) , Go_6983 ( 5 ) , high-fat diet ( 5 ) , insulin ( 5 , 7 ) , lithium ( 5 ) , LY294002 ( 5 ) , PD98059 ( 5 ) , PDGF ( 11 ) , phorbol_ester ( 5 ) , PTH(1-34) ( 2 )

Downstream Regulation
Effects of modification on APPL:
molecular association, regulation ( 5 ) , phosphorylation ( 5 )
Effects of modification on biological processes:
signaling pathway regulation ( 5 )
Induce interaction with:
INSR (mouse) ( 5 )
Inhibit interaction with:
IRS1 (human) ( 5 ) , IRS2 (human) ( 5 )

References 

1

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

2

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

3

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Ryu J, et al. (2014) APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Rep 7, 1227-38
24813896   Curated Info

6

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

9

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

10

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

11

Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198   Curated Info

12

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

13

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

14

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

15

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

16

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

17

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

18

Ballif BA, et al. (2004) Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 3, 1093-101
15345747   Curated Info