Ser177
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser177  -  OTUD5 (human)

Site Information
EVGAGyNsEDEyEAA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449291

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 4 , 5 , 6 , 7 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 ) , mass spectrometry (in vitro) ( 3 , 15 ) , mutation of modification site ( 2 , 15 ) , phospho-antibody ( 15 ) , western blotting ( 15 )
Disease tissue studied:
breast cancer ( 5 , 9 ) , HER2 positive breast cancer ( 4 ) , luminal A breast cancer ( 4 ) , luminal B breast cancer ( 4 ) , breast cancer, surrounding tissue ( 4 ) , breast cancer, triple negative ( 4 ) , leukemia ( 14 ) , acute myelogenous leukemia ( 14 ) , lung cancer ( 13 ) , non-small cell lung cancer ( 13 ) , lymphoma ( 10 ) , follicular lymphoma ( 10 ) , mantle cell lymphoma ( 10 ) , melanoma skin cancer ( 6 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Kinases, in vitro:
CK2A1 (human) ( 2 , 3 , 15 )
Treatments:
LPS ( 15 ) , MG132 ( 15 ) , vemurafenib ( 6 )

Downstream Regulation
Effects of modification on OTUD5:
enzymatic activity, induced ( 1 , 2 , 3 , 15 ) , protein conformation ( 1 , 2 , 3 , 15 )

References 

1

Kabra A, Li Y (2021) Conformational Dynamics of Deubiquitinase A and Functional Implications. Biochemistry 60, 201-209
33417762   Curated Info

2

Kabra A, Rumpa E, Li Y (2020) Modulation of conformational equilibrium by phosphorylation underlies the activation of deubiquitinase A. J Biol Chem
32071088   Curated Info

3

Kabra A, Benson CA, Li Y (2018) Backbone H, C, and N resonance assignments of deubiquitinase A in non-phosphorylated and phosphorylated forms. Biomol NMR Assign
30232733   Curated Info

4

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

7

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

10

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

11

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

12

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

13

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

14

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

15

Huang OW, et al. (2012) Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat Struct Mol Biol 19, 171-5
22245969   Curated Info

16

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

17

Guo A (2011) CST Curation Set: 11987; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

18

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

19

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

20

Stokes M (2008) CST Curation Set: 3884; Year: 2008; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

21

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info