Ser18
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser18  -  USP7 (human)

Site Information
KAGEQQLsEPEDMEM   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449238

In vivo Characterization
Methods used to characterize site in vivo:
[32P] ATP in vitro ( 22 ) , immunoassay ( 22 ) , immunoprecipitation ( 1 , 22 ) , mass spectrometry ( 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 ) , mutation of modification site ( 22 ) , phospho-antibody ( 1 , 22 ) , western blotting ( 1 , 22 )
Disease tissue studied:
bone cancer ( 22 , 37 ) , osteosarcoma ( 37 ) , breast cancer ( 6 , 11 , 12 ) , breast ductal carcinoma ( 11 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 11 ) , cervical cancer ( 39 ) , cervical adenocarcinoma ( 39 ) , colorectal cancer ( 22 ) , colorectal carcinoma ( 22 ) , leukemia ( 1 , 23 , 48 ) , acute myelogenous leukemia ( 23 ) , chronic lymphocytic leukemia ( 1 ) , chronic myelogenous leukemia ( 48 ) , hepatocellular carcinoma, surrounding tissue ( 36 ) , lung cancer ( 9 , 15 , 29 , 46 ) , non-small cell lung cancer ( 46 ) , non-small cell lung adenocarcinoma ( 9 , 15 , 29 ) , lymphoma ( 13 ) , Burkitt's lymphoma ( 13 ) , follicular lymphoma ( 13 ) , mantle cell lymphoma ( 13 ) , ovarian cancer ( 11 ) , multiple myeloma ( 35 ) , prostate cancer ( 38 ) , melanoma skin cancer ( 8 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 24 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 49 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 33 ) , 293 (epithelial) ( 42 ) , 786-O (renal) [VHL (human), transfection] ( 7 ) , 786-O (renal) ( 7 ) , A498 (renal) ( 34 ) , B lymphocyte-blood ( 35 ) , BJAB (B lymphocyte) ( 13 ) , breast ( 3 , 11 ) , BT-474 (breast cell) ( 6 ) , DG75 (B lymphocyte) ( 32 ) , endothelial-aorta ( 18 ) , FL-18 (B lymphocyte) ( 13 ) , FL-318 (B lymphocyte) ( 13 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 20 ) , Flp-In T-Rex-293 (epithelial) ( 20 ) , HCT116 (intestinal) ( 22 ) , HeLa (cervical) ( 2 , 10 , 17 , 22 , 31 , 47 , 49 , 50 , 51 ) , HeLa S3 (cervical) ( 39 ) , hepatocyte-liver ( 36 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 12 ) , HMLER ('stem, breast cancer') ( 12 ) , HUES-7 ('stem, embryonic') ( 41 ) , HUES-9 ('stem, embryonic') ( 30 ) , Jurkat (T lymphocyte) ( 16 , 25 , 26 , 27 , 28 , 45 ) , K562 (erythroid) ( 17 , 40 , 48 ) , KG-1 (myeloid) ( 23 ) , leukocyte-blood ( 37 ) , liver ( 14 ) , LNCaP (prostate cell) ( 38 ) , lung ( 15 ) , MCF-7 (breast cell) ( 5 , 6 ) , MEC1 (B lymphocyte) ( 1 ) , NCEB-1 (B lymphocyte) ( 13 ) , NCI-H1299 (pulmonary) ( 46 ) , NCI-H460 (pulmonary) ( 43 ) , OCI-ly1 (B lymphocyte) ( 13 ) , ovary ( 11 ) , PC9 (pulmonary) ( 9 ) , RAMOS (B lymphocyte) ( 13 ) , REC-1 (B lymphocyte) ( 13 ) , SU-DHL-4 (B lymphocyte) ( 13 ) , T lymphocyte-blood ( 19 ) , TIG-1 (fibroblast) ( 22 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 29 ) , U-1810 (pulmonary) ( 29 ) , U2OS (bone cell) ( 22 , 37 ) , UPN-1 (B lymphocyte) ( 13 ) , WM115 (melanocyte) ( 44 ) , WM239A (melanocyte) ( 8 )

Upstream Regulation
Regulatory protein:
ATM (human) ( 22 )
Putative in vivo kinases:
CK2A1 (human) ( 1 , 22 )
Kinases, in vitro:
CK2A1 (human) ( 1 , 22 )
Putative upstream phosphatases:
PPM1G (human) ( 22 )
Phosphatases, in vitro:
PPM1G (human) ( 22 )
Treatments:
antibody ( 19 ) , ionizing_radiation ( 22 ) , siRNA ( 22 )

Downstream Regulation
Effects of modification on USP7:
enzymatic activity, induced ( 1 ) , protein stabilization ( 22 )
Effects of modification on biological processes:
cell cycle regulation ( 22 ) , DNA repair, inhibited ( 22 ) , signaling pathway regulation ( 22 )

Disease / Diagnostics Relevance
Relevant diseases:
chronic lymphocytic leukemia ( 1 )

References 

1

Carrà G, et al. (2017) Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget 8, 35508-35522
28418900   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Sacco F, et al. (2016) Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell Syst 2, 159-71
27135362   Curated Info

6

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

7

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

8

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

9

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

10

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

11

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

12

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

13

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

14

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

15

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

16

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

17

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

18

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

19

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

20

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

21

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

22

Khoronenkova SV, et al. (2012) ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell 45, 801-13
22361354   Curated Info

23

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

24

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

25

Mulhern D (2011) CST Curation Set: 12709; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

26

Mulhern D (2011) CST Curation Set: 12710; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

27

Mulhern D (2011) CST Curation Set: 12712; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

28

Guo A (2011) CST Curation Set: 11985; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

29

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

30

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

31

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

32

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

33

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

34

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

35

Ge F, et al. (2010) Phosphoproteomic analysis of primary human multiple myeloma cells. J Proteomics 73, 1381-90
20230923   Curated Info

36

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

37

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

38

Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9, 174-8
20044836   Curated Info

39

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

40

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

41

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

42

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

43

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

44

Old WM, et al. (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34, 115-31
19362540   Curated Info

45

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

46

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

47

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

48

Stokes M (2008) CST Curation Set: 4389; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

49

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

50

Fernández-Montalván A, et al. (2007) Biochemical characterization of USP7 reveals post-translational modification sites and structural requirements for substrate processing and subcellular localization. FEBS J 274, 4256-70
17651432   Curated Info

51

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info