Ser149
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser149  -  NKAP (human)

Site Information
APEVWGLsPkNPEPD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449164

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 )
Disease tissue studied:
brain cancer ( 45 ) , glioblastoma ( 45 ) , glioma ( 45 ) , breast cancer ( 5 , 11 , 12 , 20 , 21 ) , breast ductal carcinoma ( 11 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 11 ) , cervical cancer ( 37 ) , cervical adenocarcinoma ( 37 ) , leukemia ( 25 ) , acute myelogenous leukemia ( 25 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 19 ) , acute megakaryoblastic leukemia (M7) ( 19 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 19 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 19 ) , acute myeloblastic leukemia, without maturation (M1) ( 19 ) , lung cancer ( 1 , 9 , 21 , 30 , 47 ) , non-small cell lung cancer ( 1 , 21 , 47 ) , non-small cell lung adenocarcinoma ( 9 ) , lymphoma ( 13 ) , B cell lymphoma ( 19 ) , Burkitt's lymphoma ( 13 ) , non-Hodgkin's lymphoma ( 19 ) , follicular lymphoma ( 13 ) , mantle cell lymphoma ( 13 ) , neuroblastoma ( 18 ) , ovarian cancer ( 11 ) , multiple myeloma ( 19 , 34 ) , prostate cancer ( 36 ) , melanoma skin cancer ( 1 , 8 )
Relevant cell line - cell type - tissue:
'stem, embryonic' ( 40 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 51 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 32 ) , 293 (epithelial) ( 41 ) , 293E (epithelial) ( 26 ) , 786-O (renal) [VHL (human), transfection] ( 6 ) , 786-O (renal) ( 6 ) , A2058 (keratinocyte) ( 1 ) , A498 (renal) ( 33 ) , AML-193 (monocyte) ( 19 ) , B lymphocyte-blood ( 34 ) , BJAB (B lymphocyte) ( 13 ) , breast ( 3 , 11 ) , BT-20 (breast cell) ( 21 ) , BT-549 (breast cell) ( 21 ) , Calu 6 (pulmonary) ( 21 ) , Chang liver (cervical) ( 52 ) , CL1-0 (pulmonary) ( 30 ) , CL1-1 (pulmonary) ( 30 ) , CL1-2 (pulmonary) ( 30 ) , CL1-5 (pulmonary) ( 30 ) , CMK (megakaryoblast) ( 19 ) , CTS (myeloid) ( 19 ) , DG75 (B lymphocyte) ( 31 ) , DOHH2 ('B lymphocyte, precursor') ( 19 ) , FL-18 (B lymphocyte) ( 13 ) , FL-318 (B lymphocyte) ( 13 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 23 ) , Flp-In T-Rex-293 (epithelial) ( 23 ) , H2009 (pulmonary) ( 21 ) , H2077 (pulmonary) ( 21 ) , H2887 (pulmonary) ( 21 ) , H322M (pulmonary) ( 21 ) , HCC1359 (pulmonary) ( 21 ) , HCC1937 (breast cell) ( 21 ) , HCC2279 (pulmonary) ( 21 ) , HCC366 (pulmonary) ( 21 ) , HCC4006 (pulmonary) ( 21 ) , HCC78 (pulmonary) ( 21 ) , HCC827 (pulmonary) ( 21 ) , HCT116 (intestinal) ( 42 ) , HEK293T (epithelial) ( 1 , 7 ) , HEL (erythroid) ( 19 ) , HeLa (cervical) ( 2 , 10 , 17 , 29 , 38 , 42 , 43 , 44 , 49 , 51 , 53 , 55 ) , HeLa S3 (cervical) ( 27 , 37 , 48 ) , HepG2 (hepatic) ( 54 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 12 ) , HMLER ('stem, breast cancer') ( 12 ) , HOP62 (pulmonary) ( 21 ) , HUES-7 ('stem, embryonic') ( 39 ) , HUES-9 ('stem, embryonic') ( 28 ) , JEKO-1 (B lymphocyte) ( 13 ) , Jurkat (T lymphocyte) ( 15 , 46 ) , K562 (erythroid) ( 17 , 38 , 50 ) , Kasumi-1 (myeloid) ( 19 ) , KG-1 (myeloid) ( 19 , 25 ) , LCLC-103H (pulmonary) ( 21 ) , leukocyte-blood ( 35 ) , LNCaP (prostate cell) ( 36 ) , LOU-NH91 (squamous) ( 21 ) , MCF-7 (breast cell) ( 5 , 21 ) , MDA-MB-231 (breast cell) ( 21 ) , MDA-MB-468 (breast cell) ( 21 ) , MV4-11 (macrophage) ( 19 ) , NB10 (neural crest) ( 18 ) , NCEB-1 (B lymphocyte) ( 13 ) , NCI-H1299 (pulmonary) ( 47 ) , NCI-H1648 (pulmonary) ( 21 ) , NCI-H1650 (pulmonary) ( 1 ) , NCI-H2172 (pulmonary) ( 21 ) , NCI-H322 (pulmonary) ( 21 ) , NCI-H460 (pulmonary) ( 21 , 42 ) , NCI-H520 (squamous) ( 21 ) , NPC (neural crest) ( 18 ) , OCI-ly1 (B lymphocyte) ( 13 ) , OPM-2 (plasma cell) ( 19 ) , ovary ( 11 ) , P31/FUJ (erythroid) ( 19 ) , PANC-1 (pancreatic) [PRP4 (human), knockdown, Lentiviral introduced doxycycline-inducible PRP4 shRNA] ( 14 ) , PANC-1 (pancreatic) ( 14 ) , PC9 (pulmonary) ( 9 , 21 ) , PC9-IR (pulmonary) ( 9 ) , Raji (B lymphocyte) ( 13 ) , RAMOS (B lymphocyte) ( 13 ) , REC-1 (B lymphocyte) ( 13 ) , RL ('B lymphocyte, precursor') ( 19 ) , RPMI-8266 (plasma cell) ( 19 ) , SKBr3 (breast cell) ( 20 ) , SU-DHL-4 (B lymphocyte) ( 13 ) , SU-DHL-6 (B lymphocyte) ( 19 ) , T lymphocyte-blood ( 22 ) , U266 (plasma cell) ( 19 ) , U87MG (glial) ( 45 ) , UPN-1 (B lymphocyte) ( 13 ) , WM239A (melanocyte) ( 8 )

Upstream Regulation
Regulatory protein:
PRP4 (human) ( 14 )
Putative upstream phosphatases:
PTEN (human) ( 1 )
Phosphatases, in vitro:
PTEN (human) ( 1 )
Treatments:
anti-CD3 ( 22 ) , metastatic potential ( 30 ) , quinalizarin ( 7 )

Downstream Regulation
Effects of modification on NKAP:
intracellular localization ( 1 )
Effects of modification on biological processes:
signaling pathway regulation ( 1 ) , transcription, induced ( 1 )

References 

1

Chatterjee N, et al. (2019) Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Rep 28, 2317-2330.e8
31461649   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

7

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

8

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

9

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

10

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

11

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

12

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

13

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

14

Gao Q, et al. (2013) Evaluation of cancer dependence and druggability of PRP4 kinase using cellular, biochemical, and structural approaches. J Biol Chem 288, 30125-38
24003220   Curated Info

15

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

16

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

17

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

18

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

19

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

20

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

21

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

22

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

23

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

24

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

25

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

26

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

27

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

28

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

29

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

30

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

31

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

32

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

33

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

34

Ge F, et al. (2010) Phosphoproteomic analysis of primary human multiple myeloma cells. J Proteomics 73, 1381-90
20230923   Curated Info

35

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

36

Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9, 174-8
20044836   Curated Info

37

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

38

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

39

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

40

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

41

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

42

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

43

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

44

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

45

Joughin BA, et al. (2009) An integrated comparative phosphoproteomic and bioinformatic approach reveals a novel class of MPM-2 motifs upregulated in EGFRvIII-expressing glioblastoma cells. Mol Biosyst 5, 59-67
19081932   Curated Info

46

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

47

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

48

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

49

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

50

Stokes M (2008) CST Curation Set: 4605; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

51

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

52

Sui S, et al. (2008) Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics 8, 2024-34
18491316   Curated Info

53

Olsen JV, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48
17081983   Curated Info

54

Gevaert K, et al. (2005) Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC. Proteomics 5, 3589-99
16097034   Curated Info

55

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info