Ser282
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser282  -  GJA1 (rat)

Site Information
TAPLsPMsPPGYkLV   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448854

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 15 , 16 ) , electrophoretic mobility shift ( 13 ) , immunoassay ( 4 , 8 , 11 ) , immunoprecipitation ( 5 , 6 , 10 ) , mutation of modification site ( 2 , 3 , 4 , 5 , 7 , 8 , 10 , 15 ) , peptide sequencing ( 6 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 8 , 9 , 11 , 13 , 14 ) , phosphoamino acid analysis ( 15 ) , phosphopeptide mapping ( 16 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 13 )
Disease tissue studied:
pancreatic cancer ( 10 ) , pancreatic carcinoma ( 10 )
Relevant cell line - cell type - tissue:
'heart, ventricle' ( 2 , 8 ) , brain ( 4 ) , BxPC-3 (pancreatic) ( 10 ) , fibroblast-heart ( 4 ) , heart ( 4 , 11 ) , HeLa (cervical) ( 5 ) , HUVEC (endothelial) ( 1 ) , LA-25 (fibroblast) ( 9 ) , liver ( 4 ) , macrophage-bone marrow ( 4 ) , MDCK (epithelial) ( 5 ) , myocardium ( 2 ) , myocyte-heart ( 2 , 3 , 4 , 8 , 11 ) , NRK (fibroblast) ( 6 ) , T51B (epithelial) ( 16 ) , WB-F344 (epithelial) ( 13 , 14 )

Upstream Regulation
Regulatory protein:
IP3R1 (rat) ( 8 ) , Tyk2 (human) ( 6 )
Putative in vivo kinases:
ERK1 (rat) ( 13 ) , ERK2 (rat) ( 13 )
Kinases, in vitro:
ERK1 (rat) ( 16 ) , ERK2 (mouse) ( 15 )
Treatments:
2-APB ( 4 , 8 ) , adriamycin ( 13 ) , albumin ( 1 ) , angiotensin_2 ( 6 , 11 ) , ATP ( 8 ) , BQ ( 14 ) , CBX ( 4 ) , DEM ( 14 ) , DMNQ ( 14 ) , EGF ( 15 ) , IP3/BM ( 8 ) , isoproterenol ( 11 ) , LPA ( 15 ) , menadione ( 13 , 14 ) , miRNA ( 11 ) , PD98059 ( 15 ) , phorbol_ester ( 8 ) , U0126 ( 9 ) , valsartan ( 11 ) , vanadate ( 15 )

Downstream Regulation
Effects of modification on GJA1:
activity, inhibited ( 15 ) , intracellular localization ( 11 ) , molecular association, regulation ( 7 )
Effects of modification on biological processes:
apoptosis, induced ( 2 ) , apoptosis, inhibited ( 4 )
Induce interaction with:
GJA1 (rat) ( 7 )

Disease / Diagnostics Relevance
Relevant diseases:
hypertrophic cardiomyopathy ( 2 , 11 )

References 

1

Huang Y, et al. (2022) Glycated serum albumin decreases connexin 43 phosphorylation in the corpus cavernosum. Transl Androl Urol 11, 1486-1494
36507487   Curated Info

2

Fu ZP, et al. (2021) Connexin 43 hyper-phosphorylation at serine 282 triggers apoptosis in rat cardiomyocytes via activation of mitochondrial apoptotic pathway. Acta Pharmacol Sin
34931018   Curated Info

3

Sun Z, et al. (2019) Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem Biophys Res Commun 513, 567-572
30981509   Curated Info

4

Yang Y, et al. (2019) Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis. Cell Death Differ
30770876   Curated Info

5

Thévenin AF, et al. (2017) Phosphorylation regulates connexin43/ZO-1 binding and release, an important step in gap junction turnover. Mol Biol Cell 28, 3595-3608
29021339   Curated Info

6

Li H, et al. (2016) Regulation of Connexin43 Function and Expression by Tyrosine Kinase 2. J Biol Chem 291, 15867-80
27235399   Curated Info

7

Spagnol G, et al. (2016) Structural Studies of the Nedd4 WW Domains and Their Selectivity for the Connexin43 (Cx43) Carboxyl Terminus. J Biol Chem 291, 7637-50
26841867   Curated Info

8

Kang M, et al. (2014) Cx43 phosphorylation on S279/282 and intercellular communication are regulated by IP3/IP3 receptor signaling. Cell Commun Signal 12, 58
25262337   Curated Info

9

Li H, et al. (2014) TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication. J Cell Sci 127, 3269-79
24849651   Curated Info

10

Johnson KE, et al. (2013) Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 24, 715-33
23363606   Curated Info

11

Curcio A, et al. (2013) MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One 8, e70158
23922949   Curated Info

12

Mitra SS, Xu J, Nicholson BJ (2012) Coregulation of Multiple Signaling Mechanisms in pp60v-Src-Induced Closure of Cx43 Gap Junction Channels. J Membr Biol 245, 495-506
22965738   Curated Info

13

Abdelmohsen K, et al. (2005) Doxorubicin induces EGF receptor-dependent downregulation of gap junctional intercellular communication in rat liver epithelial cells. Biol Chem 386, 217-23
15843167   Curated Info

14

Abdelmohsen K, et al. (2003) Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J Biol Chem 278, 38360-7
12874275   Curated Info

15

Warn-Cramer BJ, Cottrell GT, Burt JM, Lau AF (1998) Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem 273, 9188-96
9535909   Curated Info

16

Warn-Cramer BJ, et al. (1996) Characterization of the mitogen-activated protein kinase phosphorylation sites on the connexin-43 gap junction protein. J Biol Chem 271, 3779-86
8631994   Curated Info