Thr38
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr38  -  PPP1R14A (human)

Site Information
QkRHARVtVkYDRRE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449098

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 3 ) , electrophoretic mobility shift ( 3 ) , phospho-antibody ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 13 , 14 ) , phosphopeptide mapping ( 3 ) , western blotting ( 2 , 3 , 4 , 5 , 7 , 8 , 13 , 14 )
Disease tissue studied:
fibrosarcoma of soft tissue ( 8 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 9 ) , 'muscle, smooth' ( 2 , 13 ) , 'muscle, smooth'-intestine ( 6 ) , 'neuron, Purkinje'-'brain, cerebellum' ( 14 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 8 ) , cerebral artery ( 3 ) , COS (fibroblast) ( 8 ) , HT1080 (fibroblast) ( 8 ) , Swiss 3T3 (fibroblast) ( 8 ) , thoracic aorta ( 4 ) , uterine artery ( 7 ) , VSMC-aorta ( 14 )

Upstream Regulation
Kinases, in vitro:
DAPK3 (human) ( 16 ) , ILK (human) ( 15 ) , PKACA (human) ( 11 , 12 ) , PKCA (human) ( 10 ) , PKCD (human) ( 15 ) , PKCE (human) ( 10 ) , PKCZ (human) ( 10 ) , PKG1 (human) ( 11 ) , PRKD1 (human) ( 10 ) , ROCK2 (human) ( 15 )
Putative upstream phosphatases:
PPP2CA (human) ( 9 )
Treatments:
Ca(2+) ( 13 ) , calyculin_A ( 9 ) , colforsin ( 4 ) , depolarization ( 3 , 4 ) , endothelin ( 13 ) , fostriecin ( 9 ) , GF109203X ( 4 , 5 , 13 ) , Go_6976 ( 3 ) , GTP-gammaS ( 13 ) , KCl ( 4 , 5 , 13 ) , LY294002 ( 4 ) , nicardipine ( 5 ) , okadaic_acid ( 3 , 9 ) , PD98059 ( 7 ) , phenylephrine ( 2 , 5 , 7 , 13 ) , phorbol_ester ( 2 , 4 , 7 , 8 , 14 ) , prazosin ( 13 ) , ryanodine ( 2 , 5 ) , SNP ( 2 ) , Y27632 ( 4 , 5 , 13 )

Downstream Regulation
Effects of modification on PPP1R14A:
activity, inhibited ( 15 ) , receptor desensitization, altered ( 14 )
Effects of modification on biological processes:
cell motility, altered ( 14 , 15 )

References 

1

Eto M, et al. (2013) Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells. Biochem Biophys Res Commun 434, 137-42
23541585   Curated Info

2

Kitazawa T, et al. (2009) Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J Physiol 587, 3587-603
19470783   Curated Info

3

Obara K, Ito Y, Shimada H, Nakayama K (2008) The relaxant effect of okadaic acid on canine basilar artery involves activation of PKCalpha and phosphorylation of the myosin light chain at Thr-9. Eur J Pharmacol 598, 87-93
18835557   Curated Info

4

Azam MA, et al. (2007) Ca2+-independent, inhibitory effects of cyclic adenosine 5'-monophosphate on Ca2+ regulation of phosphoinositide 3-kinase C2alpha, Rho, and myosin phosphatase in vascular smooth muscle. J Pharmacol Exp Ther 320, 907-16
17110524   Curated Info

5

Dimopoulos GJ, et al. (2007) Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res 100, 121-9
17158339   Curated Info

6

Huang J, et al. (2006) Gi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway. Biochem J 396, 193-200
16472257   Curated Info

7

Xiao D, Longo LD, Zhang L (2005) Alpha1-adrenoceptor-mediated phosphorylation of MYPT-1 and CPI-17 in the uterine artery: role of ERK/PKC. Am J Physiol Heart Circ Physiol 288, H2828-35
15665049   Curated Info

8

Ren XD, et al. (2004) Disruption of Rho signal transduction upon cell detachment. J Cell Sci 117, 3511-8
15226371   Curated Info

9

Eto M, Kitazawa T, Brautigan DL (2004) Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc Natl Acad Sci U S A 101, 8888-93
15184667   Curated Info

10

Zemlickova E, Johannes FJ, Aitken A, Dubois T (2004) Association of CPI-17 with protein kinase C and casein kinase I. Biochem Biophys Res Commun 316, 39-47
15003508   Curated Info

11

Erdodi F, et al. (2003) Phosphorylation of protein phosphatase type-1 inhibitory proteins by integrin-linked kinase and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun 306, 382-7
12804574   Curated Info

12

Dubois T, et al. (2003) Novel in vitro and in vivo phosphorylation sites on protein phosphatase 1 inhibitor CPI-17. Biochem Biophys Res Commun 302, 186-92
12604330   Curated Info

13

Kitazawa T, Eto M, Woodsome TP, Khalequzzaman M (2003) Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J Physiol 546, 879-89
12563012   Curated Info

14

Eto M, Bock R, Brautigan DL, Linden DJ (2002) Cerebellar long-term synaptic depression requires PKC-mediated activation of CPI-17, a myosin/moesin phosphatase inhibitor. Neuron 36, 1145-58
12495628   Curated Info

15

Deng JT, et al. (2002) Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J 367, 517-24
12144526   Curated Info

16

MacDonald JA, et al. (2001) Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Lett 493, 91-4
11287002   Curated Info