Tyr142
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Tyr142  -  CTNNB1 (human)

Site Information
AVVNLINyQDDAELA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449044

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 4 , 7 , 10 , 13 ) , mass spectrometry ( 6 ) , mass spectrometry (in vitro) ( 10 ) , mutation of modification site ( 1 , 2 , 7 , 10 , 11 , 13 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 7 , 8 , 9 , 10 , 11 )
Disease tissue studied:
chondrosarcoma ( 8 ) , colorectal cancer ( 5 , 10 ) , colorectal carcinoma ( 5 , 10 ) , leukemia ( 11 ) , chronic myelogenous leukemia ( 11 ) , hepatocellular carcinoma ( 3 ) , lung cancer ( 6 ) , non-small cell lung adenocarcinoma ( 6 ) , ovarian cancer ( 4 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
Fer (human) ( 4 ) , Src (human) ( 11 )
Putative in vivo kinases:
EGFR (human) ( 8 ) , FAK (human) ( 2 ) , FGFR2 (human) ( 8 ) , FGFR3 (human) ( 8 ) , TrkA (human) ( 8 ) , VEGFR1 (human) ( 1 )
Kinases, in vitro:
Brk (human) ( 10 ) , EGFR (human) ( 8 ) , FGFR2 (human) ( 8 ) , FGFR3 (human) ( 8 ) , TrkA (human) ( 8 )
Treatments:
AGEs ( 1 , 2 ) , Bioymifi ( 1 ) , conditioned medium ( 3 ) , CTGF ( 9 ) , FGF2 ( 8 ) , HGF ( 13 ) , imatinib ( 11 ) , PF 573228 ( 2 ) , refametinib ( 3 ) , SB216763 ( 11 ) , siRNA ( 1 ) , SKI-606 ( 11 ) , sorafenib ( 3 ) , U0126 ( 5 )

Downstream Regulation
Effects of modification on CTNNB1:
intracellular localization ( 1 , 2 , 3 , 13 ) , molecular association, regulation ( 2 , 7 , 13 ) , protein degradation ( 7 )
Effects of modification on biological processes:
apoptosis, inhibited ( 3 ) , carcinogenesis, induced ( 3 ) , cell growth, induced ( 1 , 3 ) , cell motility, induced ( 1 ) , cytoskeletal reorganization ( 2 ) , signaling pathway regulation ( 2 , 8 ) , transcription, induced ( 1 , 2 )
Induce interaction with:
Bcl-9L (human) ( 13 ) , CTNNA1 (human) ( 7 )
Inhibit interaction with:
CTNNA1 (human) ( 2 )

References 

1

Chen Z, et al. (2024) Endothelial β-catenin upregulation and Y142 phosphorylation drive diabetic angiogenesis via upregulating KDR/HDAC9. Cell Commun Signal 22, 182
38491522   Curated Info

2

Weng J, et al. (2021) Advanced glycation end products induce endothelial hyperpermeability via β-catenin phosphorylation and subsequent up-regulation of ADAM10. J Cell Mol Med 25
34227224   Curated Info

3

Huynh H, et al. (2019) Sorafenib/MEK inhibitor combination inhibits tumor growth and the Wnt/β‑catenin pathway in xenograft models of hepatocellular carcinoma. Int J Oncol 54, 1123-1133
30747223   Curated Info

4

Fan G, et al. (2016) HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer. Genes Dev 30, 1542-57
27401557   Curated Info

5

Lemieux E, et al. (2015) Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene 34, 4914-27
25500543   Curated Info

6

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

7

Choi SH, et al. (2013) α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 27, 2473-88
24240237   Curated Info

8

Krejci P, et al. (2012) Receptor Tyrosine Kinases Activate Canonical WNT/β-Catenin Signaling via MAP Kinase/LRP6 Pathway and Direct β-Catenin Phosphorylation. PLoS One 7, e35826
22558232   Curated Info

9

Rooney B, et al. (2011) CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: implications for the pathogenesis of diabetic nephropathy. FEBS Lett 585, 531-8
21237163   Curated Info

10

Palka-Hamblin HL, et al. (2010) Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. J Cell Sci 123, 236-45
20026641   Curated Info

11

Coluccia AM, et al. (2007) Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 26, 1456-66
17318191   Curated Info

12

Sampietro J, et al. (2006) Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Mol Cell 24, 293-300
17052462   Curated Info

13

Brembeck FH, et al. (2004) Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions. Genes Dev 18, 2225-30
15371335   Curated Info