Thr17
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.7
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr17  -  PLB (rat)

Site Information
SAIRRAstIEMPQQA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448115

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 29 ) , mass spectrometry ( 11 ) , mutation of modification site ( 23 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 22 , 24 , 25 , 27 , 28 )
Relevant cell line - cell type - tissue:
'heart, ventricle' ( 1 , 5 ) , 'muscle, smooth'-thoracic aorta ( 22 ) , H9c2 (myoblast) ( 7 ) , heart ( 4 , 6 , 8 , 9 , 10 , 11 , 12 , 13 , 15 , 18 , 19 , 25 , 29 ) , intestine ( 11 ) , lung ( 11 ) , muscle ( 2 , 11 ) , myocardium ( 6 ) , myocyte ( 5 ) , myocyte-heart ( 1 , 3 , 7 , 12 , 14 , 16 , 17 , 21 , 23 , 24 , 26 , 27 , 28 ) , stomach ( 11 )

Upstream Regulation
Regulatory protein:
ADCY6 (human) ( 14 ) , ADCY6 (mouse) ( 14 ) , Calmodulin (human) ( 24 ) , CAMK2A (human) ( 2 ) , CAMK2B (human) ( 2 )
Putative in vivo kinases:
CAMK2D (rat) ( 17 , 22 )
Putative upstream phosphatases:
PPP1CA (human) ( 12 )
Treatments:
5-Methoxytryptophan ( 3 ) , acidosis ( 25 ) , aortic banding ( 6 ) , autocamtide_inhibitory_peptide ( 24 ) , Ba(2+) ( 7 ) , Bay 60-7550 ( 5 ) , bradykinin ( 20 ) , Ca(2+) ( 25 ) , calyculin_A ( 16 ) , ciclosporin ( 12 ) , cigarette smoke extract ( 1 ) , colforsin ( 14 , 15 ) , electrical_stimulation ( 16 , 19 , 27 ) , exercise ( 2 , 18 ) , exercise training ( 8 ) , FK506 ( 12 ) , Go_6976 ( 12 ) , H-89 ( 15 , 25 ) , hypertension ( 26 ) , ibrutinib ( 3 ) , inhibitor-1 ( 10 ) , ionomycin ( 22 ) , ischemia ( 12 ) , ischemia/reperfusion ( 7 , 13 ) , isoproterenol ( 5 , 14 , 15 , 16 , 19 , 25 ) , KBR ( 13 ) , KN-93 ( 7 , 13 , 22 , 24 ) , liothyronine ( 28 ) , low_Ca(2+) ( 25 ) , myocarditis ( 9 ) , nifedipine ( 13 , 25 ) , norepinephrine ( 21 , 27 ) , okadaic_acid ( 25 ) , prazosin ( 21 , 27 ) , prednisolone ( 9 ) , pressure ( 8 ) , W-7 ( 25 ) , zacopride ( 7 )

Downstream Regulation
Effects of modification on PLB:
activity, induced ( 1 , 12 , 25 )

Disease / Diagnostics Relevance
Relevant diseases:
diabetes mellitus ( 4 )

References 

1

Matsumura S, et al. (2024) Direct toxicity of cigarette smoke extract on cardiac function mediated by mitochondrial dysfunction in Sprague-Dawley rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 19, e0295737
38165883   Curated Info

2

Flück M, et al. (2023) Enhanced capacity for CaMKII signaling mitigates calcium release related contractile fatigue with high intensity exercise. Biochim Biophys Acta Mol Cell Res 1871, 119610
37913845   Curated Info

3

Shuai W, et al. (2023) 5-Methoxytryptophan alleviates atrial structural remodeling in ibrutinib-associated atrial fibrillation. Heliyon 9, e19501
37810107   Curated Info

4

Chaoul V, et al. (2023) Differential changes in cyclic adenosine 3'-5' monophosphate (cAMP) effectors and major Ca handling proteins during diabetic cardiomyopathy. J Cell Mol Med
36967707   Curated Info

5

Wang YW, et al. (2021) Bay 60-7550, a PDE2 inhibitor, exerts positive inotropic effect of rat heart by increasing PKA-mediated phosphorylation of phospholamban. Eur J Pharmacol 901, 174077
33798601   Curated Info

6

Mazeto IFS, et al. (2021) Calcium homeostasis behavior and cardiac function on left ventricular remodeling by pressure overload. Braz J Med Biol Res 54, e10138
33624728   Curated Info

7

Liu Q, et al. (2021) The Agonist of Inward Rectifier Potassium Channel (I) Attenuates Rat Reperfusion Arrhythmias Linked to CaMKII Signaling. Int Heart J 62, 1348-1357
34853227   Curated Info

8

de Souza SLB, et al. (2020) Adjustments in ¿¿-Adrenergic Signaling Contribute to the Amelioration of Cardiac Dysfunction by Exercise Training in Supravalvular Aortic Stenosis. Cell Physiol Biochem
32639114   Curated Info

9

Park H, et al. (2014) Increased phosphorylation of ca(2+) handling proteins as a proarrhythmic mechanism in myocarditis. Circ J 78, 2292-301
25056499   Curated Info

10

Pritchard TJ, et al. (2013) Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts. PLoS One 8, e80717
24312496   Curated Info

11

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

12

Shintani-Ishida K, Yoshida K (2011) Ischemia induces phospholamban dephosphorylation via activation of calcineurin, PKC-α, and protein phosphatase 1, thereby inducing calcium overload in reperfusion. Biochim Biophys Acta 1812, 743-51
21447388   Curated Info

13

Salas MA, et al. (2010) The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol 48, 1298-306
20060004   Curated Info

14

Gao MH, et al. (2008) Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes. J Biol Chem 283, 33527-35
18838385   Curated Info

15

Ferrero P, et al. (2007) Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during beta-adrenergic stimulation. J Mol Cell Cardiol 43, 281-91
17643448   Curated Info

16

Huke S, Bers DM (2007) Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. J Mol Cell Cardiol 42, 590-9
17239900   Curated Info

17

Yang D, et al. (2007) Ca2+/calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2+ sparks and Ca2+ waves in cardiac myocytes. Circ Res 100, 399-407
17234969   Curated Info

18

Kolwicz SC, et al. (2007) Effects of forskolin on inotropic performance and phospholamban phosphorylation in exercise-trained hypertensive myocardium. J Appl Physiol 102, 628-33
17082376   Curated Info

19

Valverde CA, et al. (2005) Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation. J Physiol 562, 801-13
15528241   Curated Info

20

Tschöpe C, et al. (2004) Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene. FASEB J 18, 1967-9
15448111   Curated Info

21

Wang W, et al. (2004) Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95, 798-806
15375008   Curated Info

22

Pfleiderer PJ, et al. (2004) Modulation of vascular smooth muscle cell migration by calcium/ calmodulin-dependent protein kinase II-delta 2. Am J Physiol Cell Physiol 286, C1238-45
14761894   Curated Info

23

Said M, et al. (2003) Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol 285, H1198-205
12763747   Curated Info

24

Yang D, et al. (2003) Calmodulin regulation of excitation-contraction coupling in cardiac myocytes. Circ Res 92, 659-67
12609973   Curated Info

25

Said M, Mundiña-Weilenmann C, Vittone L, Mattiazzi A (2002) The relative relevance of phosphorylation of the Thr(17) residue of phospholamban is different at different levels of beta-adrenergic stimulation. Pflugers Arch 444, 801-9
12355181   Curated Info

26

Bokník P, et al. (2001) Enhanced protein phosphorylation in hypertensive hypertrophy. Cardiovasc Res 51, 717-28
11530105   Curated Info

27

Hagemann D, et al. (2000) Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J Biol Chem 275, 22532-6
10825152   Curated Info

28

Ojamaa K, Kenessey A, Klein I (2000) Thyroid hormone regulation of phospholamban phosphorylation in the rat heart. Endocrinology 141, 2139-44
10830301   Curated Info

29

Vittone L, Mundiña-Weilenmann C, Said M, Mattiazzi A (1998) Mechanisms involved in the acidosis enhancement of the isoproterenol-induced phosphorylation of phospholamban in the intact heart. J Biol Chem 273, 9804-11
9545319   Curated Info