Ser282
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser282  -  GJA1 (mouse)

Site Information
tAPLsPMsPPGykLV   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448854

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 7 , 8 , 13 , 15 ) , mass spectrometry ( 14 , 16 ) , mutation of modification site ( 2 , 5 , 6 , 7 , 10 , 15 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 17 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 )
Relevant cell line - cell type - tissue:
'heart, ventricle' ( 2 ) , brain ( 6 , 7 ) , epidermal ( 8 ) , fibroblast-heart ( 7 ) , H9c2 (myoblast) ( 1 ) , heart ( 4 , 7 , 8 , 13 ) , HeLa (cervical) ( 10 ) , Leydig TM3 (Leydig) ( 3 ) , liver ( 7 ) , macrophage-bone marrow ( 7 ) , MEF (fibroblast) ( 13 , 14 ) , MLO-Y4 (osteoblast) ( 11 ) , myocyte-heart ( 5 , 7 , 8 ) , oocyte ( 12 , 15 ) , ovary ( 15 , 17 ) , PYS-2 (epithelial) ( 16 ) , TM4 (sertoli) ( 9 )

Upstream Regulation
Regulatory protein:
Desmoplakin (mouse) ( 8 ) , FGF21 (human) ( 1 ) , lamin A/C (mouse) ( 13 ) , NEDD4 (human) ( 1 ) , RIPK3 (mouse) ( 14 )
Putative in vivo kinases:
CDK5 (mouse) ( 10 ) , ERK1 (mouse) ( 8 , 13 ) , ERK2 (mouse) ( 8 , 13 )
Kinases, in vitro:
CDK5 (human) ( 10 )
Treatments:
adriamycin ( 1 , 5 ) , ATP ( 5 ) , benzo(a)pyrene ( 9 ) , fluid_shear_stress ( 11 ) , hypoxia ( 6 ) , LH ( 12 , 17 ) , normoxia ( 6 ) , PGE2 ( 11 ) , U0124 ( 17 ) , U0126 ( 8 , 17 )

Downstream Regulation
Effects of modification on GJA1:
activity, induced ( 6 ) , intracellular localization ( 8 , 10 , 15 ) , protein degradation ( 8 , 10 ) , receptor internalization, induced ( 8 ) , ubiquitination ( 8 )
Effects of modification on biological processes:
apoptosis, induced ( 2 ) , apoptosis, inhibited ( 1 , 7 ) , cell growth, induced ( 15 )

References 

1

Huang Y, et al. (2023) FGF21 protects against doxorubicin-induced cardiotoxicity by inhibiting connexin 43 ubiquitination. Free Radic Biol Med 208, 748-758
37774805   Curated Info

2

Wu L, et al. (2023) Connexin 43 dephosphorylation at serine 282 induces spontaneous arrhythmia and increases susceptibility to ischemia/reperfusion injury. Heliyon 9, e15879
37215881   Curated Info

3

Yawer A, et al. (2020) Endocrine-disrupting chemicals rapidly affect intercellular signaling in Leydig cells. Toxicol Appl Pharmacol 404, 115177
32739526   Curated Info

4

Solan JL, Marquez-Rosado L, Lampe PD (2019) Cx43 phosphorylation mediated effects on ERK and Akt protect against ischemia reperfusion injury and alter stability of stress-inducible protein NDRG1. J Biol Chem
31189653   Curated Info

5

Sun Z, et al. (2019) Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem Biophys Res Commun 513, 567-572
30981509   Curated Info

6

Freitas-Andrade M, et al. (2019) Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. J Exp Med 216, 916-935
30872361   Curated Info

7

Yang Y, et al. (2019) Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis. Cell Death Differ
30770876   Curated Info

8

Kam CY, et al. (2018) Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J Cell Biol
29959233   Curated Info

9

Ji X, et al. (2018) Benzo[a]pyrene-decreased gap junctional intercellular communication via calcium/calmodulin signaling increases apoptosis in TM4 cells. J Appl Toxicol
29578247   Curated Info

10

Qi GJ, et al. (2016) Phosphorylation of Connexin 43 by Cdk5 Modulates Neuronal Migration During Embryonic Brain Development. Mol Neurobiol 53, 2969-82
25952543   Curated Info

11

Riquelme MA, et al. (2015) Mitogen-activated Protein Kinase (MAPK) Activated by Prostaglandin E2 Phosphorylates Connexin 43 and Closes Osteocytic Hemichannels in Response to Continuous Flow Shear Stress. J Biol Chem 290, 28321-8
26442583   Curated Info

12

Shuhaibar LC, et al. (2015) Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci U S A 112, 5527-32
25775542   Curated Info

13

Chen SC, Kennedy BK, Lampe PD (2013) Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects. Exp Cell Res 319, 888-96
23261543   Curated Info

14

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

15

Dyce PW, Norris RP, Lampe PD, Kidder GM (2012) Phosphorylation of Serine Residues in the C-terminal Cytoplasmic Tail of Connexin43 Regulates Proliferation of Ovarian Granulosa Cells. J Membr Biol 245, 291-301
22729691   Curated Info

16

Zhou J (2010) CST Curation Set: 9108; Year: 2010; Biosample/Treatment: cell line, PY2/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-102) Cat#: 9416
Curated Info

17

Norris RP, et al. (2008) Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development 135, 3229-38
18776144   Curated Info