Ser282
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser282  -  GJA1 (human)

Site Information
tAPLsPMsPPGykLV   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448854

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 5 , 10 , 11 ) , mutation of modification site ( 4 ) , phospho-antibody ( 7 , 8 , 12 , 13 , 14 , 15 , 16 ) , western blotting ( 4 , 7 , 8 , 13 , 14 )
Disease tissue studied:
breast cancer ( 5 , 11 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, triple negative ( 1 ) , cervical cancer ( 15 ) , lung cancer ( 11 ) , non-small cell lung cancer ( 11 ) , neuroblastoma ( 10 ) , ovarian cancer ( 3 )
Relevant cell line - cell type - tissue:
astrocyte ( 13 ) , breast ( 1 ) , BT-549 (breast cell) ( 11 ) , Calu 6 (pulmonary) ( 11 ) , cervix ( 15 ) , CHO (fibroblast) ( 14 ) , E14tg2a ('stem, embryonic') ( 7 ) , H2009 (pulmonary) ( 11 ) , H2077 (pulmonary) ( 11 ) , H2887 (pulmonary) ( 11 ) , H322M (pulmonary) ( 11 ) , HeLa (cervical) ( 4 ) , HMLER ('stem, breast cancer') ( 5 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 5 ) , IMR32 (neural crest) ( 16 ) , keratinocyte-skin ( 12 ) , LOU-NH91 (squamous) ( 11 ) , MDA-MB-231 (breast cell) ( 11 ) , MDCK (epithelial) ( 14 ) , NB10 (neural crest) ( 10 ) , NCI-H1648 (pulmonary) ( 11 ) , NCI-H460 (pulmonary) ( 11 ) , NPC (neural crest) ( 10 ) , ovary ( 3 )

Upstream Regulation
Putative in vivo kinases:
P38A (human) ( 12 )
Treatments:
EGF ( 4 , 7 ) , phorbol_ester ( 8 , 14 ) , pressure ( 13 ) , SB202190 ( 12 ) , SB203580 ( 12 ) , U0126 ( 13 ) , UV ( 12 )

Downstream Regulation
Effects of modification on GJA1:
intracellular localization ( 15 ) , molecular association, regulation ( 7 ) , protein degradation ( 4 , 12 ) , ubiquitination ( 4 )
Effects of modification on biological processes:
cytoskeletal reorganization ( 12 ) , endocytosis, induced ( 7 )
Induce interaction with:
CLTA (human) ( 7 )

Disease / Diagnostics Relevance
Relevant diseases:
cervical cancer ( 15 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeldt DS, et al. (2015) Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol 412, 73-84
26033246   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Schmitt M, et al. (2014) Mutation of human connexin43 amino acids s279/s282 increases protein stability upon treatment with epidermal growth factor. Cell Biochem Biophys 69, 379-84
24399133   Curated Info

5

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

6

Forster T, et al. (2014) Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget 5, 1621-34
24742583   Curated Info

7

Fong JT, Nimlamool W, Falk MM (2014) EGF induces efficient Cx43 gap junction endocytosis in mouse embryonic stem cell colonies via phosphorylation of Ser262, Ser279/282, and Ser368. FEBS Lett 588, 836-44
24492000   Curated Info

8

Dunn CA, Lampe PD (2014) Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 127, 455-64
24213533   Curated Info

9

Grosely R, et al. (2013) Effects of Phosphorylation on the Structure and Backbone Dynamics of the Intrinsically Disordered Connexin43 C-terminal Domain. J Biol Chem 288, 24857-70
23828237   Curated Info

10

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

11

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

12

Bellei B, et al. (2008) Ultraviolet A induced modulation of gap junctional intercellular communication by P38 MAPK activation in human keratinocytes. Exp Dermatol 17, 115-24
18047584   Curated Info

13

Malone P, et al. (2007) Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia 55, 1085-98
17551925   Curated Info

14

Solan JL, Lampe PD (2007) Key connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217, 35-41
17629739   Curated Info

15

Steinhoff I, et al. (2006) Phosphorylation of the gap junction protein Connexin43 in CIN III lesions and cervical carcinomas. Cancer Lett 235, 291-7
15958277   Curated Info

16

Arnold JM, Phipps MW, Chen J, Phipps J (2005) Cellular sublocalization of Cx43 and the establishment of functional coupling in IMR-32 neuroblastoma cells. Mol Carcinog 42, 159-69
15605363   Curated Info