Thr73
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr73  -  RAB10 (mouse)

Site Information
AGQERFHtITTSYYR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 471953

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 2 ) , mass spectrometry ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ) , mutation of modification site ( 3 ) , phospho-antibody ( 2 , 3 , 4 , 5 , 6 , 7 , 8 ) , western blotting ( 2 , 3 , 4 , 5 , 6 , 7 , 8 )
Disease tissue studied:
neuroblastoma ( 3 ) , melanoma skin cancer ( 2 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 10 ) , 'fat, brown' ( 13 ) , 'neuron, cortical'-brain ( 6 ) , B16F10 ( 2 ) , brain ( 7 , 12 , 13 ) , BV2 (microglia) ( 4 ) , heart ( 13 ) , kidney ( 7 , 13 ) , lung ( 5 , 7 ) , MEF (fibroblast) ( 5 , 11 ) , Melan-a (melanocyte) ( 2 ) , Melan-Ink4a-1 ( 2 ) , melan-le (melanocyte) ( 2 ) , microglia ( 8 ) , muscle ( 18 , 19 ) , RAW 267.4 (macrophage) ( 20 ) , SH-SY5Y (neural crest) ( 3 ) , spleen ( 13 , 14 , 17 ) , thymus ( 15 , 16 )

Upstream Regulation
Regulatory protein:
RAB29 (human) ( 2 ) , RAB32 (human) ( 2 ) , RAB38 (human) ( 2 ) , SNCA (mouse) ( 8 )
Putative in vivo kinases:
LRRK2 (human) ( 2 , 3 , 4 , 5 , 6 , 7 )
Treatments:
GNE-7915 ( 5 ) , LRRK2-IN-1 ( 4 ) , MLI-2 ( 3 , 4 , 5 , 6 , 7 ) , Mn(2+) ( 4 ) , siRNA ( 2 )

Downstream Regulation
Effects of modification on biological processes:
apoptosis, induced ( 4 ) , autophagy, induced ( 4 ) , autophagy, inhibited ( 3 ) , signaling pathway regulation ( 4 )

References 

1

Eguchi T, et al. (2024) The V-ATPase-ATG16L1 axis recruits LRRK2 to facilitate the lysosomal stress response. J Cell Biol 223
38227290   Curated Info

2

Unapanta A, et al. (2023) Endogenous Rab38 regulates LRRK2's membrane recruitment and substrate Rab phosphorylation in melanocytes. J Biol Chem 299, 105192
37625589   Curated Info

3

Kania E, et al. (2023) LRRK2 phosphorylation status and kinase activity regulate (macro)autophagy in a Rab8a/Rab10-dependent manner. Cell Death Dis 14, 436
37454104   Curated Info

4

Pajarillo E, et al. (2023) The role of microglial LRRK2 kinase in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. J Biol Chem 299, 104879
37269951   Curated Info

5

Ho PW, et al. (2022) Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain α-synuclein oligomers without adverse effects. NPJ Parkinsons Dis 8, 115
36088364   Curated Info

6

Boecker CA, et al. (2021) Increased LRRK2 kinase activity alters neuronal autophagy by disrupting the axonal transport of autophagosomes. Curr Biol 31, 2140-2154.e6
33765413   Curated Info

7

Kluss JH, et al. (2021) Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Mol Neurodegener 16, 17
33741046   Curated Info

8

Kim C, et al. (2020) LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Sci Transl Med 12
33055242   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

11

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

12

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

13

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

14

Guo A (2009) CST Curation Set: 8166; Year: 2009; Biosample/Treatment: tissue, spleen/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

15

Guo A (2009) CST Curation Set: 8170; Year: 2009; Biosample/Treatment: tissue, thymus/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

16

Guo A (2009) CST Curation Set: 8169; Year: 2009; Biosample/Treatment: tissue, thymus/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

17

Guo A (2009) CST Curation Set: 8165; Year: 2009; Biosample/Treatment: tissue, spleen/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

18

Guo A (2009) CST Curation Set: 8162; Year: 2009; Biosample/Treatment: tissue, muscle/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

19

Guo A (2009) CST Curation Set: 8163; Year: 2009; Biosample/Treatment: tissue, muscle/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

20

Trost M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143-54
19144319   Curated Info