Ser86
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.8.0
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser86  -  Tip60 (human)

Site Information
TKNGLPGsRPGsPER   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448826

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 22 ) , mass spectrometry ( 3 , 4 , 5 , 6 , 7 , 9 , 10 , 11 , 14 , 16 , 17 , 18 , 19 , 20 , 22 ) , mutation of modification site ( 2 , 13 , 15 , 21 , 22 ) , phospho-antibody ( 2 , 13 , 15 ) , western blotting ( 2 , 13 , 15 )
Disease tissue studied:
bone cancer ( 15 ) , breast cancer ( 5 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 ) , colorectal cancer ( 13 ) , colorectal carcinoma ( 13 ) , leukemia ( 14 ) , acute myelogenous leukemia ( 14 ) , lung cancer ( 10 ) , non-small cell lung cancer ( 10 ) , melanoma skin cancer ( 6 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
APP (human) ( 21 ) , Fe65 (human) ( 21 )
Putative in vivo kinases:
CDK1 (human) ( 21 ) , GSK3B (human) ( 13 , 15 )
Kinases, in vitro:
CDK1 (human) ( 13 ) , GSK3B (human) ( 13 , 15 )
Treatments:
Akt_inhibitor_IV ( 13 ) , etoposide ( 2 ) , metformin ( 4 ) , rapamycin ( 13 ) , RO-3306 ( 2 ) , SB216763 ( 1 ) , seliciclib ( 21 ) , serum_starvation ( 13 ) , siRNA ( 1 ) , SNS-032 ( 2 )

Downstream Regulation
Effects of modification on Tip60:
acetylation ( 15 ) , activity, induced ( 1 ) , protein stabilization ( 21 )
Effects of modification on biological processes:
apoptosis, induced ( 15 ) , DNA repair, induced ( 2 ) , transcription, altered ( 21 ) , transcription, induced ( 15 )

References 

1

Cheng X, et al. (2019) Pacer Is a Mediator of mTORC1 and GSK3-TIP60 Signaling in Regulation of Autophagosome Maturation and Lipid Metabolism. Mol Cell 73, 788-802.e7
30704899   Curated Info

2

Li ML, et al. (2019) Phosphorylation of TIP60 Suppresses 53BP1 Localization at DNA Damage Sites. Mol Cell Biol 39
30297459   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Sacco F, et al. (2016) Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell Syst 2, 159-71
27135362   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

7

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

8

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

9

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

10

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

11

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

12

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

13

Lin SY, et al. (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336, 477-81
22539723   Curated Info

14

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

15

Charvet C, et al. (2011) Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell 42, 584-96
21658600   Curated Info

16

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

17

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

18

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

19

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

20

Rush J (2005) CST Curation Set: 918; Year: 2005; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XX[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) Akt Substrate Antibody Cat#: 9611
Curated Info

21

Hass MR, Yankner BA (2005) A {gamma}-secretase-independent mechanism of signal transduction by the amyloid precursor protein. J Biol Chem 280, 36895-904
16103124   Curated Info

22

Lemercier C, et al. (2003) Tip60 acetyltransferase activity is controlled by phosphorylation. J Biol Chem 278, 4713-8
12468530   Curated Info