Ser1981
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1981  -  ATM (human)

Site Information
sLAFEEGsQSTtIss   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448797

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 19 , 160 ) , [32P] bio-synthetic labeling ( 160 ) , flow cytometry ( 13 , 97 ) , immunoassay ( 17 , 30 , 41 , 44 ) , immunoprecipitation ( 6 , 7 , 8 , 15 , 18 , 19 , 23 , 35 , 40 , 43 , 46 , 48 , 49 , 65 , 92 ) , mass spectrometry ( 6 , 9 , 19 , 25 , 29 , 33 , 34 , 47 , 51 , 59 , 60 , 61 , 62 , 63 , 70 , 86 , 99 , 117 , 125 , 149 ) , microscopy-colocalization with upstream kinase ( 72 , 106 , 112 , 114 ) , multiple reaction monitoring (MRM) ( 18 ) , mutation of modification site ( 4 , 8 , 13 , 15 , 35 , 83 , 89 , 92 , 96 , 116 , 136 , 156 , 160 ) , peptide sequencing ( 68 , 160 ) , phospho-antibody ( 4 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 20 , 21 , 23 , 24 , 26 , 27 , 28 , 30 , 32 , 35 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 63 , 64 , 65 , 66 , 67 , 69 , 71 , 72 , 73 , 74 , 75 , 76 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 87 , 88 , 89 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , 113 , 114 , 115 , 116 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 , 131 , 132 , 133 , 134 , 135 , 136 , 137 , 138 , 139 , 140 , 141 , 142 , 143 , 144 , 145 , 146 , 147 , 148 , 150 , 151 , 152 , 153 , 154 , 155 , 156 , 157 , 158 , 159 , 160 ) , phosphoamino acid analysis ( 160 ) , western blotting ( 4 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 , 20 , 21 , 23 , 24 , 26 , 27 , 28 , 30 , 31 , 32 , 35 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 63 , 64 , 65 , 67 , 68 , 69 , 71 , 73 , 74 , 75 , 76 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 87 , 88 , 89 , 91 , 92 , 93 , 94 , 95 , 97 , 98 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , 113 , 116 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 126 , 127 , 128 , 129 , 130 , 131 , 133 , 136 , 142 , 143 , 144 , 150 , 152 , 156 , 157 , 160 )
Disease tissue studied:
ataxia-telangiectasia ( 63 , 69 , 83 , 98 , 105 , 122 , 130 , 136 , 143 ) , ataxia-telangiectasic cancer ( 125 ) , bladder cancer ( 48 , 136 ) , bone cancer ( 6 , 8 , 20 , 21 , 23 , 37 , 41 , 58 , 64 , 71 , 79 , 84 , 92 , 124 , 129 ) , brain cancer ( 4 , 118 ) , glioblastoma ( 4 , 118 ) , glioma ( 4 , 118 ) , breast cancer ( 6 , 16 , 24 , 35 , 67 , 76 , 80 , 92 , 102 , 112 , 123 , 126 , 129 ) , HER2 positive breast cancer ( 9 ) , luminal A breast cancer ( 9 ) , luminal B breast cancer ( 9 ) , breast cancer, surrounding tissue ( 9 ) , breast cancer, triple negative ( 9 ) , cervical cancer ( 75 ) , cervical adenocarcinoma ( 75 ) , colorectal cancer ( 6 , 8 , 35 , 98 ) , colorectal carcinoma ( 6 , 8 , 35 , 98 ) , leukemia ( 16 , 19 , 78 , 95 ) , acute lymphocytic leukemia ( 78 ) , acute myelogenous leukemia ( 95 ) , chronic lymphocytic leukemia ( 19 ) , liver cancer ( 18 , 68 ) , lung cancer ( 35 , 37 , 51 , 81 , 119 , 126 , 127 ) , non-small cell lung cancer ( 35 , 37 , 51 , 81 , 127 ) , non-small cell lung adenocarcinoma ( 35 , 37 ) , small-cell lung cancer ( 35 ) , lymphoma ( 19 ) , Burkitt's lymphoma ( 19 ) , neuroblastoma ( 89 ) , pancreatic cancer ( 16 , 107 ) , pancreatic carcinoma ( 16 , 107 ) , prostate cancer ( 14 , 44 , 73 , 121 , 128 , 131 ) , melanoma skin cancer ( 25 , 31 , 109 ) , fibrosarcoma of soft tissue ( 12 ) , cancer, squamous cell carcinoma ( 126 ) , testicular cancer ( 42 , 136 ) , MADA ( 103 ) , Nijmegen Breakage Syndrome ( 98 , 125 ) , RIDDLE syndrome ( 110 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 8 , 13 , 15 , 18 , 34 , 49 , 65 , 88 , 89 , 155 ) , 3T3 (fibroblast) ( 91 ) , A2780 (ovarian) ( 147 , 153 ) , A549 (pulmonary) ( 35 , 37 , 119 , 126 ) , AG01522 (fibroblast) ( 63 , 93 ) , AT1ABR (lymphoblastoid) ( 63 , 125 , 143 , 145 ) , AT22IJE-T (fibroblast) ( 122 ) , AT25ABR (lymphoblastoid) ( 125 ) , AT52RM (lymphoblastoid) ( 69 ) , AT5BIVA (fibroblast) ( 83 ) , ATLD 6 (lymphoblastoid) ( 125 , 130 ) , ATLD2 (fibroblast) ( 98 ) , B lymphocyte-blood ( 19 ) , BJ (fibroblast) [NBS1 (human)] ( 156 , 158 ) , bone marrow ( 136 ) , breast ( 9 ) , BT (epithelial) ( 143 ) , BxPC-3 (pancreatic) ( 107 ) , C2C12 (myoblast) ( 152 ) , C35ABR (lymphoblastoid) ( 145 ) , C3ABR (lymphoblastoid) ( 63 , 125 , 143 ) , Calu 6 (pulmonary) ( 51 ) , Caov-3 (ovarian) ( 147 ) , Capan1 (pancreatic) ( 107 ) , DF1 (fibroblast) ( 7 ) , DU 145 (prostate cell) ( 14 , 121 ) , FaDu (squamous) ( 126 ) , fibroblast ( 74 , 103 , 110 , 120 , 136 ) , fibroblast [BLM (human)] ( 144 ) , fibroblast-foreskin ( 55 , 104 , 160 ) , FT/pEBS7 (fibroblast) ( 105 ) , germ cell-testis ( 42 ) , GM00130 (B lymphocyte) ( 70 ) , GM00536 (lymphoblast) ( 16 ) , GM00637 (lymphoblast) ( 98 , 137 , 148 ) , GM01526 (lymphoblast) ( 136 ) , GM07078 (lymphoblastoid) ( 69 ) , H2009 (pulmonary) ( 51 ) , H2887 (pulmonary) ( 51 ) , Ha239 (lymphoblastoid) ( 125 ) , HaCaT (keratinocyte) ( 81 ) , HCC1937 (breast cell) ( 129 , 151 ) , HCC366 (pulmonary) ( 51 ) , HCC78 (pulmonary) ( 51 ) , HCT116 (intestinal) ( 6 , 8 , 35 , 86 , 98 ) , HEK293T (epithelial) ( 15 , 38 , 82 , 92 , 96 , 108 , 117 , 132 , 136 , 145 , 150 , 151 , 160 ) , HeLa (cervical) ( 10 , 13 , 29 , 32 , 33 , 39 , 45 , 50 , 53 , 54 , 58 , 59 , 60 , 61 , 62 , 65 , 72 , 92 , 101 , 105 , 106 , 111 , 122 , 133 , 142 , 149 , 159 , 160 ) , HeLa S3 (cervical) ( 75 , 99 ) , hepatocyte-liver ( 94 ) , HepG2 (hepatic) ( 18 , 68 ) , HFF1 (fibroblast) ( 37 ) , HFFF-2 (fibroblast) ( 111 ) , HL60 (myeloid) ( 16 ) , HOP62 (pulmonary) ( 51 ) , Hs68 (fibroblast) ( 145 ) , HT-29 (intestinal) ( 35 , 98 ) , HT1080 (fibroblast) ( 12 ) , IMR-90 (fibroblast) ( 85 , 150 ) , JB (epithelial) ( 138 ) , Jurkat (T lymphocyte) ( 65 ) , K562 (erythroid) ( 47 ) , L3 (lymphoblastoid) ( 105 , 145 ) , L40 (lymphoblastoid) ( 105 ) , LCL (lymphoblastoid) ( 69 , 146 ) , LNCaP (prostate cell) ( 44 , 73 , 128 ) , lymphoblastoid ( 74 , 120 ) , lymphocyte ( 56 , 98 ) , MCF-7 (breast cell) ( 6 , 16 , 24 , 35 , 67 , 80 , 92 , 102 , 112 , 116 , 123 , 134 , 151 ) , MCF10A1 (epithelial) ( 24 ) , MCF10AT1K (epithelial) ( 76 ) , MCF10CA1h (epithelial) ( 76 ) , MDA-MB-231 (breast cell) ( 126 ) , MDA-MB-435S (breast cell) ( 86 ) , MEF (fibroblast) ( 98 , 120 , 124 ) , MEF (fibroblast) [53BP1 (human), homozygous knockout] ( 110 ) , MRC5 (fibroblast) ( 127 ) , myoblast ( 152 ) , myocyte ( 152 ) , NALM6 (B lymphocyte) ( 78 ) , NBS-ILB1 (fibroblast) ( 43 , 69 , 130 , 137 , 140 , 148 ) , NBS03LA (lymphoblastoid) ( 125 ) , NCI-H1299 (pulmonary) ( 81 ) , NCI-H1395 (pulmonary) ( 51 ) , NCI-H146 (pulmonary) ( 35 ) , NCI-H1648 (pulmonary) ( 51 ) , NCI-H2030 (pulmonary) ( 51 ) , NCI-H322 (pulmonary) ( 51 ) , NCI-H358 (pulmonary) ( 127 ) , NHBE (epithelial) ( 127 ) , NHDF (fibroblast) ( 74 , 159 ) , NHF (fibroblast) ( 74 , 144 , 157 ) , OCI/AML3 (myeloid) ( 95 ) , oocyte [CPEB (mouse)] ( 135 ) , OVCAR3 (ovarian) ( 147 ) , PANC-1 (pancreatic) ( 16 ) , PC3 (prostate cell) ( 44 , 73 , 131 , 154 ) , prostate ( 66 ) , PSNF5 (fibroblast) ( 114 ) , PSNG13 (fibroblast) ( 114 ) , RAMOS (B lymphocyte) ( 19 ) , Saos-2 (bone cell) ( 58 , 124 ) , SH-SY5Y (neural crest) ( 89 , 115 ) , SK-MEL28 (melanocyte) ( 87 ) , SK-N-BE(2) (neural crest) ( 115 ) , skin ( 31 ) , SKNSH (neural crest) ( 159 ) , SKOV-3 (ovarian) ( 147 ) , SV40 ( 141 ) , T-CAM2 (testicular) ( 42 ) , T1 ( 109 ) , T24 (bladder cell) ( 136 ) , TCC-SUP (bladder cell) ( 48 ) , testis ( 136 ) , TIG (fibroblast) ( 27 ) , U-251 MG (glial) ( 4 ) , U2OS (bone cell) [GR (human)] ( 139 , 151 , 159 ) , U2OS (bone cell) ( 6 , 8 , 20 , 21 , 23 , 37 , 41 , 58 , 64 , 71 , 79 , 84 , 92 , 129 ) , U87MG (glial) [p53 (human)] ( 118 ) , U87MG (glial) ( 4 ) , Vero (epithelial) ( 7 ) , WM239A (melanocyte) ( 25 ) , XPC (fibroblast) ( 159 ) , YZ5 ( 105 )

Upstream Regulation
Regulatory protein:
53BP1 (human) ( 110 ) , AML2 (human) ( 71 ) , ATM (human) ( 53 , 136 ) , ATR (human) ( 37 , 120 ) , AVEN (human) ( 101 ) , Bcl-2 (human) ( 123 ) , BLM (human) ( 114 , 144 ) , BMI1 (human) ( 24 ) , BRCA1 (human) ( 102 , 129 ) , CDCA2 (human) ( 76 ) , CDK1 (human) ( 106 ) , Chk1 (human) ( 77 ) , CtIP (human) ( 35 ) , EDEM1 (human) ( 35 ) , ERK1 (human) ( 67 ) , ERK2 (human) ( 67 ) , H2AX (human) ( 98 ) , HMGA2 (human) ( 12 ) , IkB-alpha (human) ( 106 ) , IKKG (human) ( 68 ) , lamin A/C (human) ( 103 ) , MCT1 (human) ( 134 ) , MKK3 (human) ( 106 ) , MPG (human) ( 27 , 92 ) , MRE11A (human) ( 98 , 120 ) , MST1 (human) ( 65 ) , NBS1 (human) ( 43 , 106 , 120 ) , NKX3-1 (human) ( 44 , 73 ) , OBFC2B (human) ( 104 ) , p16-INK4A iso5 (human) ( 127 ) , P38A (human) ( 106 ) , p53 (human) ( 106 ) , PARG (human) ( 28 ) , PDE1A (human) ( 43 ) , PPA1 (human) ( 39 ) , PPM1D (human) ( 124 ) , PPM1D (mouse) ( 124 ) , PPP4C (human) ( 100 ) , RAD17 (human) ( 37 ) , SMEK2 (human) ( 100 ) , SOCS1 (human) ( 85 ) , Tip60 (human) ( 46 , 127 , 133 ) , TRF2 (human) ( 150 ) , WSTF (human) ( 91 ) , XRCC1 (human) ( 27 ) , YAP1 (human) ( 11 )
Putative in vivo kinases:
ATM (human) ( 35 , 58 , 63 , 108 , 116 , 125 , 130 , 132 , 133 , 135 , 145 , 159 ) , ATR (human) ( 132 )
Kinases, in vitro:
ATM (human) ( 63 , 125 , 160 ) , ATR (human) ( 120 )
Putative upstream phosphatases:
PPM1D (mouse) ( 124 ) , PPP2CA (human) ( 145 )
Phosphatases, in vitro:
PPM1D (human) ( 124 )
Treatments:
4-HT ( 17 ) , adriamycin ( 71 , 78 , 80 , 97 , 131 , 143 , 152 ) , aminoguanidine ( 39 ) , aminothiazole_compound_25 ( 153 ) , arsenite ( 142 ) , AZ20 ( 41 ) , beta-lapachone ( 112 ) , BIBX ( 126 ) , bleomycin ( 108 , 133 ) , Boc-D-FMK ( 39 ) , bornyl_acetate ( 39 ) , caffeine ( 119 , 121 ) , camptothecin ( 28 , 89 ) , CBP-93872 ( 35 ) , celecoxib ( 53 ) , cell_adhesion ( 106 ) , chloroquine ( 160 ) , cigarette_smoke ( 119 ) , colforsin ( 78 ) , CPT ( 21 ) , cycloheximide ( 88 ) , cyclophosphamide ( 127 ) , cytarabine ( 95 ) , dorsomorphin ( 39 ) , DSBs ( 116 ) , dsDNA ( 135 ) , ER_27319 ( 39 ) , Et743 ( 10 , 98 ) , etoposide ( 15 , 24 , 58 , 65 , 67 , 74 , 75 , 76 , 105 , 122 , 157 ) , flupenthixol ( 39 ) , galiellalactone ( 14 ) , gemcitabine ( 95 ) , genistein ( 48 ) , Go_6976 ( 122 ) , granzyme_B ( 109 ) , grape_seed_extract ( 121 , 128 ) , H2O2 ( 18 , 27 , 42 , 44 , 92 , 105 ) , hydroxycamptothecin ( 48 ) , hydroxyurea ( 39 , 41 , 120 , 122 , 132 , 144 ) , hypotonic_buffer ( 160 ) , IBMX ( 78 ) , IC86621 ( 45 ) , ICRF-193 ( 74 ) , ionizing_radiation ( 16 , 19 , 26 , 28 , 29 , 32 , 35 , 37 , 40 , 44 , 46 , 57 , 63 , 66 , 68 , 69 , 70 , 79 , 82 , 83 , 88 , 91 , 92 , 93 , 95 , 96 , 102 , 103 , 104 , 108 , 110 , 111 , 115 , 116 , 118 , 120 , 124 , 125 , 126 , 129 , 130 , 132 , 133 , 134 , 136 , 137 , 139 , 140 , 141 , 142 , 143 , 146 , 148 , 150 , 151 , 152 , 156 , 157 , 159 , 160 ) , irofulven ( 147 ) , KU-55933 ( 3 , 30 , 35 , 38 , 40 , 48 , 57 , 63 , 68 , 81 , 100 , 106 , 112 , 116 , 118 , 120 , 125 ) , KU-60019 ( 16 , 32 ) , lurbinectedin ( 10 ) , LY294002 ( 126 ) , MI-63 ( 97 ) , miR-16 ( 4 ) , miRNA ( 21 ) , mitomycin_C ( 73 , 113 ) , mitoxantrone ( 39 ) , MMS ( 27 , 35 , 92 ) , mutation ( 46 ) , NaB ( 30 ) , NAC ( 143 ) , neocarzinostatin ( 38 , 101 , 158 ) , nocodazole ( 54 , 79 ) , NU7026 ( 32 , 112 , 119 ) , NU7441 ( 98 ) , nutlin-3 ( 97 ) , okadaic_acid ( 46 , 108 , 129 ) , PD184352 ( 118 ) , PDTC ( 143 ) , PHA-767491 ( 39 ) , phorbol_ester ( 3 , 30 ) , pifithrin-alpha ( 106 ) , rapamycin ( 106 ) , retinoic_acid ( 115 ) , Ro31-8220 ( 39 ) , ryuvidine ( 39 ) , SB203580 ( 106 ) , seliciclib ( 89 , 106 ) , silibinin ( 138 ) , siRNA ( 54 , 89 , 91 , 92 , 102 , 120 , 124 , 129 , 134 ) , thymidine ( 77 ) , ticarcillin ( 39 ) , trichostatin_A ( 46 , 160 ) , triphala ( 107 ) , troxacitabine ( 95 ) , UV ( 13 , 35 , 44 , 73 , 88 , 120 , 132 , 138 , 139 , 151 , 160 ) , virus infection ( 56 , 94 , 106 , 111 ) , VRX0466617 ( 69 ) , wortmannin ( 53 , 63 , 116 , 125 , 160 ) , Z-VAD-FMK ( 106 ) , Zeocin ( 96 )

Downstream Regulation
Effects of modification on ATM:
activity, induced ( 101 , 156 , 159 ) , enzymatic activity, induced ( 17 , 30 , 46 , 54 , 76 , 104 , 106 , 110 , 130 , 133 , 135 , 147 , 155 ) , enzymatic activity, inhibited ( 6 ) , intracellular localization ( 17 , 30 , 67 , 83 , 93 , 110 , 116 , 130 , 160 ) , molecular association, regulation ( 6 , 17 , 44 , 48 , 76 , 83 , 116 , 156 , 160 ) , phosphorylation ( 17 ) , protein stabilization ( 83 )
Effects of modification on biological processes:
apoptosis, altered ( 106 ) , apoptosis, induced ( 48 ) , carcinogenesis, inhibited ( 48 ) , cell cycle regulation ( 27 , 35 , 40 , 46 , 74 , 101 , 160 ) , chromatin organization, altered ( 116 ) , DNA repair, induced ( 17 , 40 ) , signaling pathway regulation ( 48 , 74 )
Induce interaction with:
ATM (human) ( 116 ) , DNA ( 17 ) , H2AX (human) ( 48 ) , MDC1 (human) ( 83 ) , NBS1 (human) ( 130 ) , NKX3-1 (human) ( 44 ) , PKM (human) ( 6 ) , p53 (human) ( 160 )
Inhibit interaction with:
CDCA2 (human) ( 76 )

Disease / Diagnostics Relevance
Relevant diseases:
Bloom's syndrome ( 114 ) , melanoma skin cancer ( 31 ) , testicular cancer ( 136 ) , RIDDLE syndrome ( 110 )

References 

1

Zhu C, et al. (2020) Phospho-Ser-VCP Is Required for DNA Damage Response and Is Associated with Poor Prognosis of Chemotherapy-Treated Breast Cancer. Cell Rep 31, 107745
32521270   Curated Info

2

Li X, Kozlov SV, El-Guindy A, Bhaduri-McIntosh S (2019) Retrograde regulation by the viral protein kinase epigenetically sustains the EBV latency-to-lytic switch to augment virus production. J Virol
31189703   Curated Info

3

Beaumel S, et al. (2017) Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation. Free Radic Biol Med 113, 1-15
28916473   Curated Info

4

Zhan XH, et al. (2017) MicroRNA16 regulates glioma cell proliferation, apoptosis and invasion by targeting Wip1-ATM-p53 feedback loop. Oncotarget 8, 54788-54798
28903382   Curated Info

5

Hamperl S, et al. (2017) Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 170, 774-786.e19
28802045   Curated Info

6

Xia L, et al. (2016) A Novel Role for Pyruvate Kinase M2 as a Corepressor for P53 during the DNA Damage Response in Human Tumor Cells. J Biol Chem 291, 26138-26150
27810895   Curated Info

7

Chiu HC, et al. (2016) Suppression of Vimentin Phosphorylation by the Avian Reovirus p17 through Inhibition of CDK1 and Plk1 Impacting the G2/M Phase of the Cell Cycle. PLoS One 11, e0162356
27603133   Curated Info

8

Staples CJ, et al. (2016) MRNIP/C5orf45 Interacts with the MRN Complex and Contributes to the DNA Damage Response. Cell Rep 16, 2565-2575
27568553   Curated Info

9

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

10

Lima M, et al. (2016) Dual inhibition of ATR and ATM potentiates the activity of trabectedin and lurbinectedin by perturbing the DNA damage response and homologous recombination repair. Oncotarget 7, 25885-901
27029031   Curated Info

11

Ciamporcero E, et al. (2016) YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541-53
26119935   Curated Info

12

Natarajan S, et al. (2016) High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget 7, 12761-82
26799419   Curated Info

13

Matsunuma R, et al. (2016) UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation. Mol Cell Biol 36, 394-406
26572825   Curated Info

14

García V, et al. (2016) Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget 7, 4490-506
26683224   Curated Info

15

Cao LL, et al. (2016) ATM-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene 35, 301-13
25823024   Curated Info

16

Beyaert M, Starczewska E, Van Den Neste E, Bontemps F (2016) A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem Pharmacol 100, 40-50
26620371   Curated Info

17

Caron P, et al. (2015) Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks. Cell Rep 13, 1598-609
26586426   Curated Info

18

Zhang J, et al. (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 17, 1259-69
26344566   Curated Info

19

Bouley J, et al. (2015) A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines. Oncotarget 6, 27980-8000
26337656   Curated Info

20

Jiang Y, et al. (2015) Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol 17, 1158-68
26237645   Curated Info

21

Hühn D, Kousholt AN, Sørensen CS, Sartori AA (2015) miR-19, a component of the oncogenic miR-17∼92 cluster, targets the DNA-end resection factor CtIP. Oncogene 34, 3977-84
25308476   Curated Info

22

Shojaee S, et al. (2015) Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell 28, 114-28
26073130   Curated Info

23

Magni M, et al. (2015) CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 6, 17817-31
26158765   Curated Info

24

Wei F, et al. (2015) BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation. Oncogene 34, 3063-75
25088203   Curated Info

25

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

26

Lu D, et al. (2015) Nuclear GIT2 Is an ATM Substrate and Promotes DNA Repair. Mol Cell Biol 35, 1081-96
25605334   Curated Info

27

Khoronenkova SV, Dianov GL (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A 112, 3997-4002
25775545   Curated Info

28

Ray Chaudhuri A, Ahuja AK, Herrador R, Lopes M (2015) Poly(ADP-Ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase. Mol Cell Biol 35, 856-65
25535335   Curated Info

29

Lee HJ, et al. (2015) Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Res 25, 225-36
25601159   Curated Info

30

Hau PM, et al. (2015) Role of ATM in the Formation of the Replication Compartment during Lytic Replication of Epstein-Barr Virus in Nasopharyngeal Epithelial Cells. J Virol 89, 652-68
25355892   Curated Info

31

Bhandaru M, Martinka M, McElwee KJ, Rotte A (2015) Prognostic Significance of Nuclear Phospho-ATM Expression in Melanoma. PLoS One 10, e0134678
26275218   Curated Info

32

Wang J, et al. (2014) PTIP associates with Artemis to dictate DNA repair pathway choice. Genes Dev 28, 2693-8
25512557   Curated Info

33

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

34

Wang R, et al. (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 307, C442-54
24965592   Curated Info

35

Hirokawa T, et al. (2014) CBP-93872 inhibits NBS1-mediated ATR activation, abrogating maintenance of the DNA double-strand break-specific G2 checkpoint. Cancer Res 74, 3880-9
24876101   Curated Info

36

Gupta A, et al. (2014) MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep 8, 177-89
24953651   Curated Info

37

Wang Q, et al. (2014) Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J 33, 862-77
24534091   Curated Info

38

Santini S, et al. (2014) ATM kinase activity modulates ITCH E3-ubiquitin ligase activity. Oncogene 33, 1113-23
23435430   Curated Info

39

FitzGerald J, et al. (2014) A High Through-Put Screen for Small Molecules Modulating MCM2 Phosphorylation Identifies Ryuvidine as an Inducer of the DNA Damage Response. PLoS One 9, e98891
24902048   Curated Info

40

Chaudhary N, et al. (2014) SMAR1 coordinates HDAC6-induced deacetylation of Ku70 and dictates cell fate upon irradiation. Cell Death Dis 5, e1447
25299772   Curated Info

41

Toledo LI, et al. (2013) ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell 155, 1088-103
24267891   Curated Info

42

Staibano S, et al. (2013) Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors. BMC Cancer 13, 433
24059746   Curated Info

43

Wen J, et al. (2013) NBN phosphorylation regulates the accumulation of MRN and ATM at sites of DNA double-strand breaks. Oncogene 32, 4448-56
23146902   Curated Info

44

Bowen C, et al. (2013) Functional Activation of ATM by the Prostate Cancer Suppressor NKX3.1. Cell Rep 4, 516-29
23890999   Curated Info

45

Vidal-Eychenié S, Décaillet C, Basbous J, Constantinou A (2013) DNA structure-specific priming of ATR activation by DNA-PKcs. J Cell Biol 202, 421-9
23897887   Curated Info

46

Kaidi A, Jackson SP (2013) KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498, 70-4
23708966   Curated Info

47

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

48

Wang Y, et al. (2013) Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-κB/IKK pathway-induced apoptosis. PLoS One 8, e50175
23365634   Curated Info

49

Sato K, et al. (2012) A DNA-Damage Selective Role for BRCA1 E3 Ligase in Claspin Ubiquitylation, CHK1 Activation, and DNA Repair. Curr Biol 22, 1659-66
22863316   Curated Info

50

Ando K, et al. (2012) PIDD Death-Domain Phosphorylation by ATM Controls Prodeath versus Prosurvival PIDDosome Signaling. Mol Cell 47, 681-93
22854598   Curated Info

51

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

52

Yang C, et al. (2012) The kinetochore protein Bub1 participates in the DNA damage response. DNA Repair (Amst) 11, 185-91
22071147   Curated Info

53

Saha B, et al. (2012) Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene 31, 173-86
21765464   Curated Info

54

Yang C, et al. (2011) Aurora-B Mediated ATM Serine 1403 Phosphorylation Is Required for Mitotic ATM Activation and the Spindle Checkpoint. Mol Cell 44, 597-608
22099307   Curated Info

55

Lossaint G, et al. (2011) Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 30, 4261-74
21532626   Curated Info

56

Norman JM, et al. (2011) The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells. Nat Immunol 12, 975-83
21874023   Curated Info

57

Gatei M, et al. (2011) ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J Biol Chem 286, 31542-56
21757780   Curated Info

58

Kavanaugh GM, et al. (2011) The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Res 39, 7465-76
21653549   Curated Info

59

Zhou J (2011) CST Curation Set: 11707; Year: 2011; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb Cat#: 6966, PTMScan(R) Phospho-ATM/ATR Substrate Motif (S*/T*QG) Immunoaffinity Beads Cat#: 6969
Curated Info

60

Zhou J (2011) CST Curation Set: 11708; Year: 2011; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb Cat#: 6966, PTMScan(R) Phospho-ATM/ATR Substrate Motif (S*/T*QG) Immunoaffinity Beads Cat#: 6969
Curated Info

61

Zhou J (2011) CST Curation Set: 11709; Year: 2011; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-ATM/ATR Substrate (S*Q) (D23H2/D69H5) Rabbit mAb Cat#: 9607, PTMScan(R) Phospho-ATM/ATR Substrate (S*Q) Immunoaffinity Beads Cat#: 9884
Curated Info

62

Zhou J (2011) CST Curation Set: 11710; Year: 2011; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-ATM/ATR Substrate (S*Q) (D23H2/D69H5) Rabbit mAb Cat#: 9607, PTMScan(R) Phospho-ATM/ATR Substrate (S*Q) Immunoaffinity Beads Cat#: 9884
Curated Info

63

Kozlov SV, et al. (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286, 9107-19
21149446   Curated Info

64

Segal-Raz H, et al. (2011) ATM-mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA double-strand break repair. EMBO Rep 12, 713-9
21637298   Curated Info

65

Wen W, et al. (2010) MST1 promotes apoptosis through phosphorylation of histone H2AX. J Biol Chem 285, 39108-16
20921231   Curated Info

66

Jäämaa S, et al. (2010) DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue. Cancer Res 70, 8630-41
20978201   Curated Info

67

Wei F, Xie Y, Tao L, Tang D (2010) Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation. Cell Signal 22, 1783-9
20637859   Curated Info

68

Hinz M, et al. (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol Cell 40, 63-74
20932475   Curated Info

69

Carlessi L, Buscemi G, Fontanella E, Delia D (2010) A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage. Biochim Biophys Acta 1803, 1213-23
20599567   Curated Info

70

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

71

Yamada C, et al. (2010) RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a Co-activator for p53. J Biol Chem 285, 16693-703
20353948   Curated Info

72

Perfettini JL, et al. (2010) 53BP1 represses mitotic catastrophe in syncytia elicited by the HIV-1 envelope. Cell Death Differ 17, 811-20
19876065   Curated Info

73

Bowen C, Gelmann EP (2010) NKX3.1 activates cellular response to DNA damage. Cancer Res 70, 3089-97
20395202   Curated Info

74

Bower JJ, et al. (2010) Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM. Cell Cycle 9, 1617-28
20372057   Curated Info

75

Deibler RW, Kirschner MW (2010) Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts. Mol Cell 37, 753-67
20347419   Curated Info

76

Peng A, Lewellyn AL, Schiemann WP, Maller JL (2010) Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol 20, 387-96
20188555   Curated Info

77

Gagou ME, Zuazua-Villar P, Meuth M (2010) Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell 21, 739-52
20053681   Curated Info

78

Safa M, et al. (2010) Inhibitory role of cAMP on doxorubicin-induced apoptosis in pre-B ALL cells through dephosphorylation of p53 serine residues. Apoptosis 15, 196-203
19882354   Curated Info

79

van Vugt MA, et al. (2010) A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G(2)/M DNA Damage Checkpoint. PLoS Biol 8, e1000287
20126263   Curated Info

80

Li X, et al. (2010) SUMOylation of the transcriptional co-repressor KAP1 is regulated by the serine and threonine phosphatase PP1. Sci Signal 3, ra32
20424263   Curated Info

81

Craig AL, et al. (2010) DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol Cancer 9, 195
20663147   Curated Info

82

Shanware NP, et al. (2010) Conserved and distinct modes of CREB/ATF transcription factor regulation by PP2A/B56gamma and genotoxic stress. PLoS One 5, e12173
20730097   Curated Info

83

So S, Davis AJ, Chen DJ (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 187, 977-90
20026654   Curated Info

84

You Z, et al. (2009) CtIP links DNA double-strand break sensing to resection. Mol Cell 36, 954-69
20064462   Curated Info

85

Calabrese V, et al. (2009) SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 36, 754-67
20005840   Curated Info

86

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

87

Santra MK, Wajapeyee N, Green MR (2009) F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459, 722-5
19412162   Curated Info

88

Shanware NP, Williams LM, Bowler MJ, Tibbetts RS (2009) Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190. BMB Rep 42, 142-7
19336000   Curated Info

89

Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11, 211-8
19151707   Curated Info

90

Yajima H, et al. (2009) DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 385, 800-10
19071136   Curated Info

91

Xiao A, et al. (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57-62
19092802   Curated Info

92

Chou WC, et al. (2008) Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J 27, 3140-50
18971944   Curated Info

93

Takahashi A, et al. (2008) DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus. J Radiat Res (Tokyo) 49, 645-52
18987440   Curated Info

94

Zhao F, et al. (2008) Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J Gastroenterol 14, 6163-70
18985806   Curated Info

95

Ewald B, Sampath D, Plunkett W (2008) ATM and the Mre11-Rad50-Nbs1 complex respond to nucleoside analogue-induced stalled replication forks and contribute to drug resistance. Cancer Res 68, 7947-55
18829552   Curated Info

96

Iwahori S, et al. (2008) Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites. Cell Signal 20, 1795-803
18619531   Curated Info

97

Jones RJ, et al. (2008) Inhibition of the p53 E3 ligase HDM-2 induces apoptosis and DNA damage--independent p53 phosphorylation in mantle cell lymphoma. Clin Cancer Res 14, 5416-25
18765533   Curated Info

98

Guirouilh-Barbat J, Redon C, Pommier Y (2008) Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol Biol Cell 19, 3969-81
18632984   Curated Info

99

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

100

Chowdhury D, et al. (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 31, 33-46
18614045   Curated Info

101

Guo JY, et al. (2008) Aven-dependent activation of ATM following DNA damage. Curr Biol 18, 933-42
18571408   Curated Info

102

Yan Y, et al. (2008) Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res 68, 5113-21
18593910   Curated Info

103

di Masi A, et al. (2008) The R527H mutation in LMNA gene causes an increased sensitivity to ionizing radiation. Cell Cycle 7, 2030-7
18604166   Curated Info

104

Richard DJ, et al. (2008) Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453, 677-81
18449195   Curated Info

105

Fu X, et al. (2008) Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 3, e2009
18431490   Curated Info

106

Perfettini JL, et al. (2008) Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia. PLoS One 3, e2458
18560558   Curated Info

107

Shi Y, Sahu RP, Srivastava SK (2008) Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis. BMC Cancer 8, 294
18847491   Curated Info

108

Sun Y, Xu Y, Roy K, Price BD (2007) DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol 27, 8502-9
17923702   Curated Info

109

Meslin F, et al. (2007) Granzyme B-induced cell death involves induction of p53 tumor suppressor gene and its activation in tumor target cells. J Biol Chem 282, 32991-9
17855337   Curated Info

110

Stewart GS, et al. (2007) RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc Natl Acad Sci U S A 104, 16910-5
17940005   Curated Info

111

Iwahori S, et al. (2007) Enhanced phosphorylation of transcription factor sp1 in response to herpes simplex virus type 1 infection is dependent on the ataxia telangiectasia-mutated protein. J Virol 81, 9653-64
17609267   Curated Info

112

Bentle MS, et al. (2007) Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, beta-lapachone. Cancer Res 67, 6936-45
17638905   Curated Info

113

Rink L, et al. (2007) Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood 110, 651-60
17431132   Curated Info

114

Rao VA, et al. (2007) Endogenous gamma-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase deficient cells is related to DNA replication arrested forks. Mol Cancer Res 5, 713-24
17634426   Curated Info

115

Fernandes ND, Sun Y, Price BD (2007) Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells. J Biol Chem 282, 16577-84
17426037   Curated Info

116

Berkovich E, Monnat RJ, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9, 683-90
17486112   Curated Info

117

Matsuoka S, et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-6
17525332   Curated Info

118

Golding SE, et al. (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67, 1046-53
17283137   Curated Info

119

Tanaka T, et al. (2007) ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 8, 26
17594478   Curated Info

120

Stiff T, et al. (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25, 5775-82
17124492   Curated Info

121

Agarwal C, Tyagi A, Agarwal R (2006) Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 5, 3294-302
17172433   Curated Info

122

Leung-Pineda V, Ryan CE, Piwnica-Worms H (2006) Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol 26, 7529-38
17015476   Curated Info

123

Zhang J, et al. (2006) Identification of an ataxia telangiectasia-mutated protein mediated surveillance system to regulate Bcl-2 overexpression. Oncogene 25, 5601-11
16636671   Curated Info

124

Shreeram S, et al. (2006) Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23, 757-64
16949371   Curated Info

125

Kozlov SV, et al. (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25, 3504-14
16858402   Curated Info

126

Toulany M, et al. (2006) Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12, 4119-26
16818713   Curated Info

127

Eymin B, et al. (2006) p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26, 4339-50
16705183   Curated Info

128

Kaur M, Agarwal R, Agarwal C (2006) Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation. Mol Cancer Ther 5, 1265-74
16731759   Curated Info

129

Aglipay JA, et al. (2006) ATM activation by ionizing radiation requires BRCA1-associated BAAT1. J Biol Chem 281, 9710-8
16452482   Curated Info

130

Cerosaletti K, Wright J, Concannon P (2006) Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 26, 1691-9
16478990   Curated Info

131

Deep G, et al. (2006) Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene 25, 1053-69
16205633   Curated Info

132

Dodson GE, Tibbetts RS (2006) DNA replication stress-induced phosphorylation of cyclic AMP response element-binding protein mediated by ATM. J Biol Chem 281, 1692-7
16293623   Curated Info

133

Sun Y, et al. (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102, 13182-7
16141325   Curated Info

134

Hsu HL, Shi B, Gartenhaus RB (2005) The MCT-1 oncogene product impairs cell cycle checkpoint control and transforms human mammary epithelial cells. Oncogene 24, 4956-64
15897892   Curated Info

135

You Z, et al. (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25, 5363-79
15964794   Curated Info

136

Bartkova J, et al. (2005) ATM activation in normal human tissues and testicular cancer. Cell Cycle 4, 838-45
15846060   Curated Info

137

Bhoumik A, et al. (2005) ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Mol Cell 18, 577-87
15916964   Curated Info

138

Dhanalakshmi S, Agarwal C, Singh RP, Agarwal R (2005) Silibinin up-regulates DNA-protein kinase-dependent p53 activation to enhance UVB-induced apoptosis in mouse epithelial JB6 cells. J Biol Chem 280, 20375-83
15792956   Curated Info

139

Lu X, Nannenga B, Donehower LA (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19, 1162-74
15870257   Curated Info

140

Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605-11
15758953   Curated Info

141

Bradshaw PS, Stavropoulos DJ, Meyn MS (2005) Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37, 193-7
15665826   Curated Info

142

Yih LH, et al. (2005) Arsenite induces prominent mitotic arrest via inhibition of G2 checkpoint activation in CGL-2 cells. Carcinogenesis 26, 53-63
15471901   Curated Info

143

Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279, 53272-81
15489221   Curated Info

144

Davalos AR, Kaminker P, Hansen RK, Campisi J (2004) ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 3, 1579-86
15539948   Curated Info

145

Goodarzi AA, et al. (2004) Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 23, 4451-61
15510216   Curated Info

146

Buscemi G, et al. (2004) Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 23, 7691-700
15361830   Curated Info

147

Wang J, et al. (2004) ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J Biol Chem 279, 39584-92
15269203   Curated Info

148

Cerosaletti K, Concannon P (2004) Independent roles for nibrin and Mre11-Rad50 in the activation and function of Atm. J Biol Chem 279, 38813-9
15234984   Curated Info

149

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info

150

Karlseder J, et al. (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2, E240
15314656   Curated Info

151

Fabbro M, et al. (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279, 31251-8
15159397   Curated Info

152

Latella L, et al. (2004) Differentiation-induced radioresistance in muscle cells. Mol Cell Biol 24, 6350-61
15226436   Curated Info

153

Zhu Y, et al. (2004) Intra-S-phase checkpoint activation by direct CDK2 inhibition. Mol Cell Biol 24, 6268-77
15226429   Curated Info

154

Singh SV, et al. (2004) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279, 25813-22
15073169   Curated Info

155

Irarrazabal CE, Liu JC, Burg MB, Ferraris JD (2004) ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP. Proc Natl Acad Sci U S A 101, 8809-14
15173573   Curated Info

156

Horejsí Z, et al. (2004) Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 23, 3122-7
15048089   Curated Info

157

Powers JT, et al. (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2, 203-14
15140942   Curated Info

158

Ali A, et al. (2004) Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 18, 249-54
14871926   Curated Info

159

Mochan TA, Venere M, DiTullio RA, Halazonetis TD (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63, 8586-91
14695167   Curated Info

160

Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499-506
12556884   Curated Info