Ser51
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser51  -  DAP (human)

Site Information
DQEWEsPsPPkPtVF   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 471098

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 23 ) , immunoprecipitation ( 23 ) , mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 ) , mutation of modification site ( 23 ) , phospho-antibody ( 23 ) , western blotting ( 23 )
Disease tissue studied:
breast cancer ( 7 , 13 , 14 , 30 ) , breast adenocarcinoma ( 30 ) , breast ductal carcinoma ( 7 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, triple negative ( 2 , 7 , 30 ) , cervical cancer ( 25 ) , cervical adenocarcinoma ( 25 ) , leukemia ( 17 ) , acute myelogenous leukemia ( 17 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 12 ) , acute megakaryoblastic leukemia (M7) ( 12 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 12 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 12 ) , acute myeloblastic leukemia, without maturation (M1) ( 12 ) , lung cancer ( 5 , 14 ) , non-small cell lung cancer ( 14 ) , non-small cell lung adenocarcinoma ( 5 ) , lymphoma ( 8 ) , B cell lymphoma ( 12 ) , Burkitt's lymphoma ( 8 ) , non-Hodgkin's lymphoma ( 12 ) , ovarian cancer ( 7 ) , multiple myeloma ( 12 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 22 ) , 293 (epithelial) ( 23 ) , 293E (epithelial) ( 19 ) , A498 (renal) ( 24 ) , AML-193 (monocyte) ( 12 ) , BJAB (B lymphocyte) ( 8 ) , breast ( 2 , 7 ) , BT-20 (breast cell) ( 14 ) , BT-549 (breast cell) ( 14 ) , Calu 6 (pulmonary) ( 14 ) , CMK (megakaryoblast) ( 12 ) , CTS (myeloid) ( 12 ) , DOHH2 ('B lymphocyte, precursor') ( 12 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 15 ) , Flp-In T-Rex-293 (epithelial) ( 15 ) , H2009 (pulmonary) ( 14 ) , H2077 (pulmonary) ( 14 ) , H2887 (pulmonary) ( 14 ) , H322M (pulmonary) ( 14 ) , HCC1359 (pulmonary) ( 14 ) , HCC1937 (breast cell) ( 14 ) , HCC2279 (pulmonary) ( 14 ) , HCC366 (pulmonary) ( 14 ) , HCC4006 (pulmonary) ( 14 ) , HCC78 (pulmonary) ( 14 ) , HCC827 (pulmonary) ( 14 ) , HEK293T (epithelial) ( 4 , 23 ) , HEL (erythroid) ( 12 ) , HeLa (cervical) ( 1 , 6 , 18 , 21 , 23 , 26 , 27 , 28 , 29 ) , HeLa S3 (cervical) ( 25 ) , HOP62 (pulmonary) ( 14 ) , HUES-9 ('stem, embryonic') ( 20 ) , Jurkat (T lymphocyte) ( 10 ) , K562 (erythroid) ( 26 ) , Kasumi-1 (myeloid) ( 12 ) , KG-1 (myeloid) ( 12 , 17 ) , LCLC-103H (pulmonary) ( 14 ) , LOU-NH91 (squamous) ( 14 ) , MCF-7 (breast cell) ( 14 , 30 ) , MDA-MB-231 (breast cell) ( 14 ) , MDA-MB-468 (breast cell) ( 14 , 30 ) , MV4-11 (macrophage) ( 12 ) , NCI-H1395 (pulmonary) ( 14 ) , NCI-H1568 (pulmonary) ( 14 ) , NCI-H157 (pulmonary) ( 14 ) , NCI-H1648 (pulmonary) ( 14 ) , NCI-H1666 (pulmonary) ( 14 ) , NCI-H2030 (pulmonary) ( 14 ) , NCI-H2172 (pulmonary) ( 14 ) , NCI-H322 (pulmonary) ( 14 ) , NCI-H460 (pulmonary) ( 14 ) , NCI-H520 (squamous) ( 14 ) , NCI-H647 (pulmonary) ( 14 ) , OPM-2 (plasma cell) ( 12 ) , ovary ( 7 ) , P31/FUJ (erythroid) ( 12 ) , PC9 (pulmonary) ( 5 , 14 ) , RL ('B lymphocyte, precursor') ( 12 ) , RPMI-8266 (plasma cell) ( 12 ) , SH-SY5Y (neural crest) ( 9 ) , SKBr3 (breast cell) ( 13 , 30 ) , SU-DHL-6 (B lymphocyte) ( 12 ) , U266 (plasma cell) ( 12 )

Upstream Regulation
Kinases, in vitro:
mTOR (human) ( 23 )
Treatments:
amino_acid_starvation ( 23 ) , BI_4834 ( 18 ) , LRRK2-IN-1 ( 9 ) , nocodazole ( 25 ) , rapamycin ( 23 ) , refeeding ( 23 ) , Torin1 ( 23 )

Downstream Regulation
Effects of modification on DAP:
activity, inhibited ( 23 )
Effects of modification on biological processes:
autophagy, altered ( 23 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

5

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

9

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

10

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

11

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

12

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

13

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

14

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

15

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

16

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

17

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

18

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

19

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

20

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

21

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

22

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

23

Koren I, Reem E, Kimchi A (2010) DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol 20, 1093-8
20537536   Curated Info

24

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

25

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

26

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

27

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

28

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

29

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

30

Zougman A, Wiśniewski JR (2006) Beyond linker histones and high mobility group proteins: global profiling of perchloric acid soluble proteins. J Proteome Res 5, 925-34
16602700   Curated Info