Ser197
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser197  -  PAK2 (mouse)

Site Information
TKsIYtRsVIDPIPA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448297

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 19 ) , mass spectrometry ( 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 ) , mutation of modification site ( 17 ) , phospho-antibody ( 1 , 17 , 19 ) , western blotting ( 1 , 17 , 19 )
Disease tissue studied:
lymphoma ( 17 ) , anaplastic large cell lymphoma ( 17 ) , T cell lymphoma ( 17 ) , neuroblastoma ( 12 ) , melanoma skin cancer ( 15 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 8 ) , 'fat, brown' ( 13 ) , 3T3 (fibroblast) ( 17 ) , B lymphocyte ( 1 ) , BaF3 ('B lymphocyte, precursor') ( 17 ) , heart ( 9 ) , Hepa 1-6 (epithelial) ( 16 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 5 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 5 ) , HL-1 (myocyte) ( 5 ) , Karpas-299 (T lymphocyte) ( 17 ) , kidney ( 13 ) , liver ( 7 , 18 ) , lung ( 13 ) , lymphocyte-blood ( 17 ) , MC3T3-E1 (preosteoblast) ( 4 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 11 ) , MEF (fibroblast) ( 10 ) , mpkCCD (renal) ( 14 ) , N1E-115 (neuron) ( 12 ) , neutrophil ( 19 ) , pancreas ( 13 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 15 ) , stromal ( 6 )

Upstream Regulation
Regulatory protein:
IFITM3 (human) ( 1 ) , IFITM3 (rat) ( 1 ) , NPM-ALK (human) ( 17 )
Treatments:
bacterial infection ( 2 ) , fMLP ( 19 ) , LPA ( 12 ) , LY294002 ( 17 ) , SU6656 ( 17 )

References 

1

Lee J, et al. (2020) IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature
33149299   Curated Info

2

Fabrik I, et al. (2018) The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage. Mol Cell Proteomics 17, 81-94
29046388   Curated Info

3

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

4

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

5

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

8

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

9

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

10

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

11

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

12

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

13

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

14

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

15

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

16

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

17

Colomba A, et al. (2008) Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas. Oncogene 27, 2728-36
17998938   Curated Info

18

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

19

Zhan Q, et al. (2003) p21-activated kinase 2 in neutrophils can be regulated by phosphorylation at multiple sites and by a variety of protein phosphatases. J Immunol 171, 3785-93
14500679   Curated Info