Thr183
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr183  -  AMPKA1 (human)

Site Information
sDGEFLRtsCGsPNy   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448786
Available spectra:  1 CST
Associated spectra:  1 CST

In vivo Characterization
Methods used to characterize site in vivo:
flow cytometry ( 2 ) , immunoassay ( 4 ) , immunoprecipitation ( 4 , 20 , 128 , 132 ) , mass spectrometry ( 11 , 29 , 30 , 32 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 45 , 46 , 47 , 50 , 53 , 54 , 55 , 56 , 57 , 71 , 72 , 73 , 81 , 82 , 83 , 87 , 105 ) , mass spectrometry (in vitro) ( 2 , 21 ) , mutation of modification site ( 4 , 19 , 20 , 111 , 117 ) , phospho-antibody ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 31 , 33 , 48 , 49 , 51 , 58 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 74 , 75 , 76 , 77 , 78 , 85 , 86 , 88 , 89 , 91 , 92 , 93 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 106 , 108 , 109 , 110 , 111 , 112 , 113 , 114 , 115 , 116 , 117 , 118 , 119 , 120 , 121 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 , 131 , 132 ) , phosphoamino acid analysis ( 111 ) , phosphopeptide mapping ( 111 ) , western blotting ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 31 , 33 , 48 , 49 , 51 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 74 , 75 , 76 , 77 , 78 , 85 , 86 , 88 , 89 , 91 , 92 , 93 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 106 , 108 , 109 , 111 , 112 , 113 , 114 , 115 , 116 , 117 , 119 , 123 , 125 , 127 , 128 , 130 )
Disease tissue studied:
ataxia-telangiectasia ( 100 ) , bone cancer ( 28 , 49 , 99 , 111 ) , brain cancer ( 75 ) , glioblastoma ( 75 ) , glioma ( 75 ) , breast cancer ( 4 , 10 , 67 , 77 , 86 , 111 , 112 ) , HER2 positive breast cancer ( 11 ) , luminal A breast cancer ( 11 ) , luminal B breast cancer ( 11 ) , breast cancer, triple negative ( 11 ) , cervical cancer ( 95 , 106 , 117 ) , cervical adenocarcinoma ( 95 , 106 , 117 ) , colorectal cancer ( 3 , 49 , 92 ) , colorectal carcinoma ( 3 , 49 , 92 ) , gastric cancer ( 43 , 50 ) , gastric carcinoma ( 43 , 50 ) , kidney cancer ( 65 , 103 ) , leukemia ( 9 ) , acute myelogenous leukemia ( 9 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 9 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 9 ) , liver cancer ( 20 , 22 , 23 , 96 , 114 ) , hepatocellular carcinoma ( 22 , 23 ) , lung cancer ( 5 , 6 , 14 , 25 , 29 , 30 , 71 , 72 , 73 , 92 , 95 , 106 , 117 , 119 ) , non-small cell lung cancer ( 5 , 6 , 14 , 25 , 29 , 71 , 72 , 73 , 92 , 119 ) , non-small cell lung adenocarcinoma ( 6 , 25 , 29 , 30 ) , non-small cell large cell lung carcinoma ( 14 ) , non-small cell squamous cell lung carcinoma ( 30 , 92 ) , ovarian cancer ( 17 ) , pancreatic cancer ( 16 ) , pancreatic carcinoma ( 16 ) , prostate cancer ( 13 ) , melanoma skin cancer ( 4 , 12 , 111 ) , fibrosarcoma of soft tissue ( 127 ) , type 2 diabetes ( 60 )
Relevant cell line - cell type - tissue:
'kidney, tubule' [TSC2 (mouse), homozygous knockout] ( 65 ) , 'muscle, skeletal' ( 60 , 64 , 88 , 115 , 116 , 118 , 123 , 124 , 128 , 131 ) , 293 (epithelial) ( 8 , 31 , 33 , 51 , 61 , 66 , 74 , 78 , 89 , 93 , 96 , 101 , 110 ) , 3T3-L1 (fibroblast) ( 117 ) , 786-O (renal) ( 65 ) , A2058 (keratinocyte) ( 4 , 12 ) , A549 (pulmonary) ( 6 , 25 , 29 , 92 , 95 , 106 , 117 , 121 ) , adipocyte ( 69 ) , adipose tissue ( 62 , 118 ) , aorta ( 91 , 95 ) , ARPE19 (retinal) ( 98 ) , Aspc1 (pancreatic) ( 16 ) , BAEC (endothelial) ( 85 , 93 , 95 , 106 , 108 , 117 , 130 ) , breast ( 11 ) , Chang liver (cervical) ( 129 ) , CX-1 (intestinal) ( 3 ) , ECV304 (endothelial) ( 110 ) , endothelial-aorta ( 126 ) , erythroblast ( 2 ) , fibroblast-embryo [LKB1 (mouse)] ( 121 ) , FT/pEBS7 (fibroblast) ( 100 ) , granulosa ( 109 ) , HAEC (endothelial) ( 97 ) , HCC15 (pulmonary) ( 30 ) , HCT116 (intestinal) ( 3 , 49 , 92 ) , HEK293T (epithelial) ( 4 , 6 , 7 , 20 , 23 , 132 ) , HeLa (cervical) [CAMKK1 (human)] ( 121 ) , HeLa (cervical) ( 18 , 23 , 49 , 58 , 61 , 75 , 76 , 81 , 82 , 87 , 97 , 100 , 111 ) , HeLa S3 (cervical) ( 95 , 106 , 117 ) , Hep 3B2.1-7 (hepatic) ( 22 , 23 ) , hepatocyte-liver ( 27 ) , HepG2 (hepatic) ( 20 , 22 , 96 ) , HK2 (epithelial) ( 65 ) , HPCA (prostate cell) ( 13 ) , HT1080 (fibroblast) ( 127 ) , Huh7 (hepatic) ( 22 , 114 ) , HUVEC (endothelial) ( 4 , 15 , 63 , 68 , 70 , 91 , 95 , 104 , 113 , 125 ) , Jurkat (T lymphocyte) ( 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 45 , 53 , 54 , 55 , 56 , 57 , 105 ) , K562 (erythroid) ( 32 ) , Kasumi-1 (myeloid) ( 9 ) , KG-1 (myeloid) ( 9 ) , KG-1a (myeloid) ( 9 ) , kidney [KLK1 (human)] ( 103 ) , L3 (lymphoblastoid) ( 100 ) , L40 (lymphoblastoid) ( 100 ) , LLC-PK1 (renal) ( 48 ) , LOU-NH91 (squamous) ( 30 ) , lung ( 29 , 30 , 71 , 72 , 73 ) , MCF-7 (breast cell) ( 10 , 67 , 111 , 112 ) , MDA-MB-231 (breast cell) ( 4 , 10 , 77 , 86 ) , MDA-MB-435S (breast cell) ( 83 ) , MEF (fibroblast) ( 7 ) , MEF (fibroblast) [TSC2 (mouse), heterozygous knockout] ( 65 ) , MEL1220 (melanocyte) ( 12 ) , MKN-45 (gastric) ( 43 ) , MV4-11 (macrophage) ( 83 ) , NCI-H1299 (pulmonary) ( 5 , 92 ) , NCI-H1355 (pulmonary) ( 29 ) , NCI-H157 (pulmonary) ( 14 ) , NCI-H1650 (pulmonary) ( 92 ) , NCI-H1703 (squamous) ( 30 , 92 ) , NCI-H1792 (pulmonary) ( 29 , 119 ) , NCI-H1838 (pulmonary) ( 119 ) , NCI-H2073 (pulmonary) ( 30 ) , NCI-H23 (pulmonary) ( 29 , 92 ) , NCI-H2342 (pulmonary) ( 30 ) , NCI-H441 (pulmonary) ( 29 ) , NCI-H460 (pulmonary) ( 14 , 92 ) , oocyte ( 102 ) , ovarian ( 17 , 102 ) , RAW 264 (macrophage) ( 120 ) , retina ( 117 ) , SKOV-3 (ovarian) ( 17 ) , stomach ( 50 ) , thoracic aorta ( 106 ) , U-251 MG (glial) ( 75 ) , U2OS (bone cell) ( 28 , 49 , 99 , 111 ) , vascular smooth muscle cell ('muscle, smooth') ( 106 , 117 ) , WM239A (melanocyte) ( 111 ) , WM35 (melanocyte) ( 111 ) , YZ5 ( 100 )

Upstream Regulation
Regulatory protein:
ALDOA (human) ( 7 ) , AMPKA1 (human) ( 9 , 90 , 108 , 109 , 113 ) , ATM (human) ( 100 ) , CAB39 (human) ( 75 ) , CAMKK1 (human) ( 91 ) , EEF2K (human) ( 10 ) , EGFR (human) ( 90 ) , eNOS (human) ( 91 ) , GRK2 (human) ( 21 ) , HK1 (human) ( 7 ) , HRas (human) ( 23 ) , JAK2 (human) ( 114 ) , KLK1 (human) ( 103 ) , LEPR (human) ( 114 ) , LKB1 (human) ( 23 , 68 , 91 , 95 , 96 ) , LKB1 (mouse) ( 78 ) , MAGE-A6 (human) ( 24 ) , MAGEA3 (human) ( 24 ) , p27Kip1 (human) ( 111 ) , PKCZ (human) ( 95 , 117 ) , PKM (human) ( 5 ) , PKM iso2 (human) ( 5 ) , PPM1F (human) ( 61 ) , PPP2CA (human) ( 106 ) , PPP2CA (mouse) ( 106 ) , PPPM1A (human) ( 61 ) , SESN2 (mouse) ( 94 ) , SIRT1 (human) ( 96 ) , SKP2 (human) ( 23 ) , SOCS3 (human) ( 114 ) , TET2 (human) ( 4 ) , TIF1B (human) ( 24 ) , ULK1 (human) ( 51 )
Putative in vivo kinases:
AMPKA1 (human) ( 2 , 4 ) , CAMKK1 (human) ( 121 ) , CAMKK2 (human) ( 6 , 121 ) , LKB1 (human) ( 8 , 25 , 89 , 97 , 117 , 129 , 132 ) , MLK3 (human) ( 25 )
Kinases, in vitro:
AMPKA1 (human) ( 84 ) , BRSK1 iso2 (human) ( 89 ) , BRSK2 (human) ( 89 ) , CAMK2B (human) ( 52 ) , CAMKK2 (human) ( 6 ) , LKB1 (human) ( 25 , 89 , 127 ) , MLK3 (human) ( 25 )
Putative upstream phosphatases:
PPM1E (human) ( 61 )
Phosphatases, in vitro:
PPP2CA (human) ( 52 , 59 , 101 )
Treatments:
2-deoxyglucose ( 6 , 74 , 76 , 80 , 85 , 92 , 121 ) , 4-AN ( 28 ) , 4-HT ( 77 ) , 991 ( 6 , 19 ) , 9cRA ( 77 ) , A-769662 ( 7 , 8 , 33 , 78 , 101 ) , A23187 ( 76 , 89 , 91 , 95 , 125 ) , A79662 ( 14 ) , acadesine ( 17 , 48 , 62 , 65 , 78 , 85 , 86 , 90 , 91 , 96 , 100 , 106 , 109 , 110 , 113 , 121 , 125 , 132 ) , ADI-PEG20 ( 12 ) , adiponectin ( 21 , 86 , 130 ) , AG1478 ( 90 ) , apelin ( 62 ) , apoA-I ( 126 ) , apocynin ( 16 ) , arcyriarubin_A ( 117 ) , aspirin ( 33 ) , atorvastatin ( 113 ) , ATP ( 112 ) , BAPTA-AM ( 91 , 95 , 125 ) , berberine ( 7 ) , bradykinin ( 91 ) , C2-ceramide ( 106 ) , C5M ( 18 ) , cAMP_analog ( 25 ) , CCCP ( 125 ) , cGMP_analog ( 91 ) , CITCO ( 27 ) , colforsin ( 89 ) , compound_C ( 9 , 27 , 28 , 86 , 90 , 91 , 93 , 102 , 110 , 113 ) , DEA-NONOate ( 91 ) , DETA-NONOate ( 63 ) , dexamethasone ( 77 ) , EDTA ( 78 , 106 ) , EGF ( 90 ) , etoposide ( 100 ) , exercise ( 79 , 88 , 115 , 116 , 118 , 123 , 131 ) , exercise training ( 60 ) , FGF21 ( 69 ) , fibronectin ( 119 ) , fluid_shear_stress ( 70 ) , fumonisin_B1 ( 106 ) , glucose ( 7 , 95 , 96 ) , glucose_starvation ( 23 , 75 , 99 , 111 ) , glutamine ( 7 ) , Go_6983 ( 117 ) , GW_9662 ( 97 ) , H-89 ( 117 , 125 ) , H-CHO ( 123 ) , H2O2 ( 90 , 93 , 98 , 100 , 101 ) , HH-F3 ( 22 ) , high_glucose ( 4 ) , histamine ( 125 ) , IGF-1 ( 109 ) , indirubin ( 110 ) , insulin ( 60 , 116 , 128 , 130 ) , ionomycin ( 112 , 121 ) , itraconazol ( 15 ) , JQ1 ( 9 ) , KT5823 ( 117 ) , L-CHO ( 123 ) , L-NAME ( 91 , 97 ) , laminar flow ( 108 ) , leptin ( 85 , 114 ) , LPS ( 64 ) , LY294002 ( 93 , 111 ) , mannitol ( 121 ) , metformin ( 4 , 27 , 67 , 85 , 102 , 109 , 110 ) , Mg(+2) ( 33 ) , miR-451 ( 75 ) , miRNA ( 75 ) , myocardial infarction ( 21 ) , NAC ( 90 ) , nicotinamide ( 96 ) , nocodazole ( 31 ) , ODQ ( 91 ) , okadaic_acid ( 86 , 106 ) , oleic_acid ( 106 ) , oligomycin ( 114 , 120 ) , ONOO(-) ( 85 , 117 ) , oscillatory_flow ( 70 , 108 ) , palmitate ( 106 ) , palmitoleic_acid ( 106 ) , PD153035 ( 90 ) , PD98059 ( 119 ) , PDTC ( 90 ) , phenformin ( 6 , 8 , 48 , 61 , 76 , 110 , 132 ) , phenobarbital ( 27 ) , pioglitazone ( 97 ) , PKC-zeta_inhibitor ( 85 , 117 ) , PTIO ( 91 ) , quercetin ( 33 ) , racepinefrine ( 118 ) , rapamycin ( 65 , 67 ) , resveratrol ( 16 , 48 , 70 , 96 ) , retinoic_acid ( 77 ) , rosiglitazone ( 97 ) , rotenone ( 6 ) , S17834 ( 96 ) , salicylate ( 33 ) , SB203580 ( 90 ) , seocalcitol ( 112 ) , simvastatin ( 95 ) , siRNA ( 85 , 95 , 104 , 111 ) , SNAP ( 91 ) , SNP ( 91 ) , sorafenib ( 8 ) , sorbitol ( 25 ) , spermine ( 91 ) , splitomicin ( 96 ) , starvation_medium ( 51 ) , statin ( 85 ) , STO-609 ( 13 , 91 , 95 , 97 , 107 , 112 , 121 ) , SU6656 ( 8 ) , tamoxifen ( 77 ) , thapsigargin ( 112 ) , thrombin ( 125 ) , TNF ( 63 , 97 ) , triptolide ( 13 ) , troglitazone ( 97 ) , U73122 ( 125 ) , urofollitropin ( 109 ) , UV ( 28 , 90 ) , VEGF ( 107 ) , wortmannin ( 108 , 119 , 125 , 130 )

Downstream Regulation
Effects of modification on AMPKA1:
enzymatic activity, induced ( 2 , 85 , 110 , 121 , 127 , 129 , 131 , 132 ) , intracellular localization ( 48 ) , phosphorylation ( 4 )
Effects of modification on biological processes:
apoptosis, induced ( 2 , 9 ) , apoptosis, inhibited ( 5 ) , autophagy, induced ( 2 , 5 , 12 ) , cell cycle regulation ( 2 ) , cell growth, induced ( 2 ) , signaling pathway regulation ( 4 )

Disease / Diagnostics Relevance
Relevant diseases:
colorectal carcinoma ( 24 ) , non-small cell squamous cell lung carcinoma ( 24 ) , ovarian epithelial carcinoma ( 17 ) , diabetes mellitus ( 4 ) , type 2 diabetes ( 60 )

References 

1

Han F, et al. (2018) The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun 9, 4728
30413706   Curated Info

2

Ladli M, et al. (2018) Finely-tuned regulation of AMP-activated protein kinase (AMPK) is crucial for human adult erythropoiesis. Haematologica
30309849   Curated Info

3

Song X, et al. (2018) AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System X Activity. Curr Biol 28, 2388-2399.e5
30057310   Curated Info

4

Wu D, et al. (2018) Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637-641
30022161   Curated Info

5

Prakasam G, et al. (2017) Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival. J Biol Chem 292, 15561-15576
28778925   Curated Info

6

Willows R, et al. (2017) Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochem J 474, 3059-3073
28694351   Curated Info

7

Zhang CS, et al. (2017) Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112-116
28723898   Curated Info

8

Ross FA, et al. (2017) Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib. Cell Chem Biol 24, 813-824.e4
28625738   Curated Info

9

Jang JE, et al. (2017) AMPK-ULK1-Mediated Autophagy Confers Resistance to BET Inhibitor JQ1 in Acute Myeloid Leukemia Stem Cells. Clin Cancer Res 23, 2781-2794
27864418   Curated Info

10

Cheng Y, et al. (2016) eEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis. Oncogene 35, 6293-6308
27181208   Curated Info

11

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

12

Li YY, et al. (2016) BRAF inhibitor resistance enhances vulnerability to arginine deprivation in melanoma. Oncotarget 7, 17665-80
26771234   Curated Info

13

Zhao F, et al. (2016) Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget 7, 5366-82
26734992   Curated Info

14

Liu F, et al. (2016) LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget 7, 2519-31
26506235   Curated Info

15

Head SA, et al. (2015) Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc Natl Acad Sci U S A 112, E7276-85
26655341   Curated Info

16

Kato A, et al. (2015) Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2. Oncotarget 6, 42963-75
26556864   Curated Info

17

Peart T, et al. (2015) Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids. Oncotarget 6, 22424-38
26068970   Curated Info

18

Le LT, et al. (2015) Discovery of benzo[e]pyridoindolones as kinase inhibitors that disrupt mitosis exit while erasing AMPK-Thr172 phosphorylation on the spindle. Oncotarget 6, 22152-66
26247630   Curated Info

19

Ducommun S, et al. (2015) Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal 27, 978-88
25683918   Curated Info

20

Oligschlaeger Y, et al. (2015) The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J Biol Chem 290, 11715-28
25792737   Curated Info

21

Wang Y, et al. (2015) G-protein-coupled receptor kinase 2-mediated desensitization of adiponectin receptor 1 in failing heart. Circulation 131, 1392-404
25696921   Curated Info

22

Jhuang HJ, et al. (2015) Gluconeogenesis, lipogenesis, and HBV replication are commonly regulated by PGC-1α-dependent pathway. Oncotarget 6, 7788-803
25762623   Curated Info

23

Lee SW, et al. (2015) Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol Cell 57, 1022-33
25728766   Curated Info

24

Pineda CT, et al. (2015) Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-28
25679763   Curated Info

25

Luo L, et al. (2015) MLK3 phophorylates AMPK independently of LKB1. PLoS One 10, e0123927
25874865   Curated Info

26

Hong S, et al. (2014) Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 289, 13132-41
24652283   Curated Info

27

Yang H, et al. (2014) Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling. Mol Pharmacol 85, 249-60
24252946   Curated Info

28

Wu Y, et al. (2014) Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response. Mol Cell 53, 63-74
24289924   Curated Info

29

Rikova K, Hall B (2013) CST Curation Set: 20736, 21163, 30158, 30159, 30160; Year: 2013; Biosample/Treatment: cell line, A549, H1355, H23, H441, H1792; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY, p[ST], RXXp[ST], pSQ, p[ST]QG, LXRXXp[ST], p[ST]P
Curated Info

30

Rikova K, Hall B (2013) CST Curation Set: 20739, 21166, 30167, 30168, 30169; Year: 2013; Biosample/Treatment: cell line, H2342, H2073, Lou-NH91, HCC15, H1703; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY, p[ST], RXXp[ST], pSQ, p[ST]QG, LXRXXp[ST], p[ST]P
Curated Info

31

Mao L, et al. (2013) AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci 126, 1498-505
23418352   Curated Info

32

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

33

Hawley SA, et al. (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918-22
22517326   Curated Info

34

Stokes MP, et al. (2012) PTMScan Direct: Identification and Quantification of Peptides from Critical Signaling Proteins by Immunoaffinity Enrichment Coupled with LC-MS/MS. Mol Cell Proteomics 11, 187-201
22322096   Curated Info

35

Guo A (2012) CST Curation Set: 13982; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

36

Mulhern D (2012) CST Curation Set: 13939; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

37

Mulhern D (2012) CST Curation Set: 13827; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XpSX(K/R)
Curated Info

38

Mulhern D (2012) CST Curation Set: 13829; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XpSX(K/R)
Curated Info

39

Mulhern D (2012) CST Curation Set: 13107; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

40

Mulhern D (2012) CST Curation Set: 13108; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

41

Mulhern D (2012) CST Curation Set: 13109; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

42

Mulhern D (2012) CST Curation Set: 13112; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

43

Mulhern D (2012) CST Curation Set: 13405; Year: 2012; Biosample/Treatment: cell line, MKN-45/untreated; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

44

Zhang D, Guo M, Zhang W, Lu XY (2011) Adiponectin stimulates proliferation of adult hippocampal neural stem/progenitor cells through activation of p38 mitogen-activated protein kinase (p38MAPK)/glycogen synthase kinase 3β (GSK-3β)/β-catenin signaling cascade. J Biol Chem 286, 44913-20
22039048   Curated Info

45

Mulhern D (2011) CST Curation Set: 13106; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

46

Rikova K (2011) CST Curation Set: 13114; Year: 2011; Biosample/Treatment: cell line, MGH-2/unknown; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

47

Rikova K (2011) CST Curation Set: 13122; Year: 2011; Biosample/Treatment: cell line, MGH-10/unknown; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

48

Kodiha M, Ho-Wo-Cheong D, Stochaj U (2011) Pharmacological AMP-kinase activators have compartment-specific effects on cell physiology. Am J Physiol Cell Physiol 301, C1307-15
21918180   Curated Info

49

Malik SA, et al. (2011) BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918-29
21460857   Curated Info

50

Rikova K (2011) CST Curation Set: 12176; Year: 2011; Biosample/Treatment: tissue, gastrointestinal tract/untreated; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-100) Cat#: 9411, PTMScan(R) Phospho-Tyr Motif (Y*) Immunoaffinity Beads Cat#: 1991
Curated Info

51

Löffler AS, et al. (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7, 696-706
21460634   Curated Info

52

Oakhill JS, et al. (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 1433-5
21680840   Curated Info

53

Guo A (2011) CST Curation Set: 11884; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

54

Guo A (2011) CST Curation Set: 11890; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

55

Guo A (2011) CST Curation Set: 11891; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

56

Guo A (2011) CST Curation Set: 11892; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

57

Guo A (2011) CST Curation Set: 11893; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

58

Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Menendez JA (2011) Polo-like kinase 1 regulates activation of AMP-activated protein kinase (AMPK) at the mitotic apparatus. Cell Cycle 10, 1295-302
21474997   Curated Info

59

Xiao B, et al. (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230-3
21399626   Curated Info

60

Vind BF, et al. (2011) Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia 54, 157-67
20938636   Curated Info

61

Voss M, et al. (2011) Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cell Signal 23, 114-24
20801214   Curated Info

62

Attané C, et al. (2011) Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol 46, 21-8
21062936   Curated Info

63

Bess E, Fisslthaler B, Frömel T, Fleming I (2011) Nitric oxide-induced activation of the AMP-activated protein kinase α2 subunit attenuates IκB kinase activity and inflammatory responses in endothelial cells. PLoS One 6, e20848
21673972   Curated Info

64

Andreasen AS, et al. (2011) Type 2 diabetes is associated with altered NF-κB DNA binding activity, JNK phosphorylation, and AMPK phosphorylation in skeletal muscle after LPS. PLoS One 6, e23999
21931634   Curated Info

65

Habib SL, et al. (2010) Novel mechanism of reducing tumourigenesis: upregulation of the DNA repair enzyme OGG1 by rapamycin-mediated AMPK activation and mTOR inhibition. Eur J Cancer 46, 2806-20
20656472   Curated Info

66

Kazgan N, Williams T, Forsberg LJ, Brenman JE (2010) Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol Biol Cell 21, 3433-42
20685962   Curated Info

67

Zakikhani M, Blouin MJ, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 123, 271-9
20135346   Curated Info

68

Ohashi K, et al. (2010) LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 285, 22291-8
20489196   Curated Info

69

Chau MD, et al. (2010) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A 107, 12553-8
20616029   Curated Info

70

Chen Z, et al. (2010) Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A 107, 10268-73
20479254   Curated Info

71

Rikova K (2010) CST Curation Set: 9452; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

72

Rikova K (2010) CST Curation Set: 9456; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

73

Rikova K (2010) CST Curation Set: 9450; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

74

Soliman GA, et al. (2010) mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285, 7866-79
20022946   Curated Info

75

Godlewski J, et al. (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37, 620-32
20227367   Curated Info

76

Fogarty S, et al. (2010) Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 426, 109-18
19958286   Curated Info

77

Eto I (2010) Upstream molecular signaling pathways of p27(Kip1) expression: Effects of 4-hydroxytamoxifen, dexamethasone, and retinoic acids. Cancer Cell Int 10, 3
20170512   Curated Info

78

Zagórska A, et al. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3, ra25
20354225   Curated Info

79

McGee SL, Fairlie E, Garnham AP, Hargreaves M (2009) Exercise-induced histone modifications in human skeletal muscle. J Physiol 587, 5951-8
19884317   Curated Info

80

Zhong D, et al. (2009) The Glycolytic Inhibitor 2-Deoxyglucose Activates Multiple Prosurvival Pathways through IGF1R. J Biol Chem 284, 23225-33
19574224   Curated Info

81

Zhou J (2009) CST Curation Set: 7592; Year: 2009; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

82

Zhou J (2009) CST Curation Set: 7591; Year: 2009; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

83

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

84

Tuerk RD, et al. (2009) Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 390, 141-8
19376078   Curated Info

85

Xie Z, et al. (2009) Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol 29, 3582-96
19414597   Curated Info

86

Kim KY, et al. (2009) Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res 69, 4018-26
19366811   Curated Info

87

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

88

Rose AJ, et al. (2009) Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. Am J Physiol Regul Integr Comp Physiol 296, R326-33
19036825   Curated Info

89

Fogarty S, Hardie DG (2009) C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J Biol Chem 284, 77-84
18854318   Curated Info

90

Cao C, et al. (2008) AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem 283, 28897-908
18715874   Curated Info

91

Zhang J, et al. (2008) Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 283, 27452-61
18693249   Curated Info

92

Zhong D, et al. (2008) LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins. Cancer Res 68, 7270-7
18794113   Curated Info

93

Hu Z, Chen J, Wei Q, Xia Y (2008) Bidirectional actions of hydrogen peroxide on endothelial nitric-oxide synthase phosphorylation and function: co-commitment and interplay of Akt and AMPK. J Biol Chem 283, 25256-63
18617528   Curated Info

94

Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451-60
18692468   Curated Info

95

Choi HC, et al. (2008) Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 283, 20186-97
18474592   Curated Info

96

Hou X, et al. (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283, 20015-26
18482975   Curated Info

97

Boyle JG, et al. (2008) Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 283, 11210-7
18303014   Curated Info

98

Qin S, De Vries GW (2008) alpha2 But not alpha1 AMP-activated protein kinase mediates oxidative stress-induced inhibition of retinal pigment epithelium cell phagocytosis of photoreceptor outer segments. J Biol Chem 283, 6744-51
18195011   Curated Info

99

Okoshi R, et al. (2008) Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 283, 3979-87
18056705   Curated Info

100

Fu X, et al. (2008) Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 3, e2009
18431490   Curated Info

101

Sanders MJ, et al. (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282, 32539-48
17728241   Curated Info

102

Tosca L, Uzbekova S, Chabrolle C, Dupont J (2007) Possible role of 5'AMP-activated protein kinase in the metformin-mediated arrest of bovine oocytes at the germinal vesicle stage during in vitro maturation. Biol Reprod 77, 452-65
17567959   Curated Info

103

Yuan G, et al. (2007) Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways. Endocrinology 148, 2016-26
17272402   Curated Info

104

Cheng KK, et al. (2007) Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 56, 1387-94
17287464   Curated Info

105

Possemato A (2007) CST Curation Set: 2798; Year: 2007; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q
Curated Info

106

Wu Y, et al. (2007) Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem 282, 9777-88
17255104   Curated Info

107

Reihill JA, Ewart MA, Hardie DG, Salt IP (2007) AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun 354, 1084-8
17276402   Curated Info

108

Guo D, Chien S, Shyy JY (2007) Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res 100, 564-71
17272808   Curated Info

109

Tosca L, Chabrolle C, Uzbekova S, Dupont J (2007) Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5' monophosphate-activated protein kinase (AMPK). Biol Reprod 76, 368-78
17123942   Curated Info

110

Blume C, et al. (2007) AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 282, 4601-12
17082196   Curated Info

111

Liang J, et al. (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9, 218-24
17237771   Curated Info

112

Høyer-Hansen M, et al. (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25, 193-205
17244528   Curated Info

113

Sun W, et al. (2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655-62
17116771   Curated Info

114

Uotani S, Abe T, Yamaguchi Y (2006) Leptin activates AMP-activated protein kinase in hepatic cells via a JAK2-dependent pathway. Biochem Biophys Res Commun 351, 171-5
17054914   Curated Info

115

Roepstorff C, et al. (2006) Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol 574, 125-38
16600998   Curated Info

116

Kuhl JE, et al. (2006) Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol Endocrinol Metab 290, E1296-303
16434556   Curated Info

117

Xie Z, et al. (2006) Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 281, 6366-75
16407220   Curated Info

118

Watt MJ, et al. (2006) Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 290, E500-8
16188906   Curated Info

119

Han S, Khuri FR, Roman J (2006) Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 66, 315-23
16397245   Curated Info

120

Bando H, et al. (2005) Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 11, 5784-92
16115917   Curated Info

121

Hurley RL, et al. (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280, 29060-6
15980064   Curated Info

122

Wang W, Budhu A, Forgues M, Wang XW (2005) Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7, 823-30
16041368   Curated Info

123

Roepstorff C, et al. (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288, E133-42
15383373   Curated Info

124

Roepstorff C, et al. (2004) Regulation of hormone-sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise. J Physiol 560, 551-62
15308678   Curated Info

125

Thors B, Halldórsson H, Thorgeirsson G (2004) Thrombin and histamine stimulate endothelial nitric-oxide synthase phosphorylation at Ser1177 via an AMPK mediated pathway independent of PI3K-Akt. FEBS Lett 573, 175-80
15327994   Curated Info

126

Drew BG, et al. (2004) High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci U S A 101, 6999-7004
15107497   Curated Info

127

Shaw RJ, et al. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 3329-35
14985505   Curated Info

128

Højlund K, et al. (2004) AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes. Am J Physiol Endocrinol Metab 286, E239-44
14532170   Curated Info

129

Woods A, et al. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13, 2004-8
14614828   Curated Info

130

Chen H, et al. (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278, 45021-6
12944390   Curated Info

131

Nielsen JN, et al. (2003) 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol 94, 631-41
12391032   Curated Info

132

Hawley SA, et al. (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2, 28
14511394   Curated Info