Ser322
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser322  -  TACSTD2 (human)

Site Information
GELRkEPsL______   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 470219

In vivo Characterization
Methods used to characterize site in vivo:
flow cytometry ( 2 ) , mass spectrometry ( 3 , 4 , 5 , 6 , 7 , 9 , 10 ) , mutation of modification site ( 2 ) , phospho-antibody ( 2 ) , western blotting ( 2 )
Disease tissue studied:
breast cancer ( 5 , 9 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, triple negative ( 3 , 5 ) , colorectal cancer ( 2 ) , colorectal carcinoma ( 2 ) , lung cancer ( 7 , 9 ) , non-small cell lung cancer ( 9 ) , non-small cell lung adenocarcinoma ( 7 ) , ovarian cancer ( 5 ) , pancreatic cancer ( 2 ) , pancreatic carcinoma ( 2 ) , pancreatic ductal adenocarcinoma ( 6 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Putative in vivo kinases:
PKCA (human) ( 2 ) , PKCD (human) ( 2 )
Treatments:
bisindolylmaleimide ( 2 ) , CID755673 ( 2 ) , Go_6976 ( 2 ) , Go_6983 ( 2 ) , hispidin ( 2 ) , LY294002 ( 2 ) , PD98059 ( 2 ) , phorbol_ester ( 2 ) , SB203580 ( 2 ) , siRNA ( 2 ) , SP600125 ( 2 )

Downstream Regulation
Effects of modification on TACSTD2:
intracellular localization ( 2 ) , molecular association, regulation ( 2 ) , protein degradation ( 2 )
Effects of modification on biological processes:
cell motility, induced ( 2 )
Inhibit interaction with:
Claudin-7 (human) ( 2 )

References 

1

Guerra E, et al. (2022) Trop-2, Na/K ATPase, CD9, PKCα, cofilin assemble a membrane signaling super-complex that drives colorectal cancer growth and invasion. Oncogene
35132180   Curated Info

2

Mori Y, et al. (2019) Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility. J Biol Chem
31177095   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

5

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

6

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

7

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

8

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

9

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

10

Olsen JV, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48
17081983   Curated Info