Ser863
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser863  -  GluR1 (rat)

Site Information
TSTLPRNsGAGASGG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448566

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 45 ) , [32P] bio-synthetic labeling ( 45 , 46 ) , immunoassay ( 14 ) , immunoprecipitation ( 9 , 17 ) , mutation of modification site ( 3 , 9 , 14 , 41 , 42 , 44 , 45 , 46 ) , phospho-antibody ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 ) , phosphopeptide mapping ( 45 , 46 ) , western blotting ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 31 , 32 , 33 , 34 , 37 , 38 , 39 , 41 , 42 , 44 )
Relevant cell line - cell type - tissue:
'brain, amygdala' ( 19 ) , 'brain, caudate-putamen' ( 4 , 19 ) , 'brain, cerebral cortex' ( 4 , 11 , 19 , 27 , 28 ) , 'brain, hippocampus' ( 2 , 4 , 6 , 8 , 19 , 20 , 22 , 25 , 26 , 31 , 32 , 34 , 39 , 40 , 41 , 43 , 45 ) , 'brain, hippocampus, CA1 region' ( 10 ) , 'brain, hippocampus, dentate gyrus' ( 22 ) , 'brain, nucleus accumbens' ( 4 , 13 , 14 , 18 , 19 , 21 , 27 , 33 , 38 ) , 'brain, striatum' ( 4 ) , 'brain, ventral tegmental area' ( 19 ) , 'neuron, cortical'-brain ( 38 ) , 'neuron, hippocampal'-brain ( 10 , 29 , 37 ) , 'neuron, hippocampal, CA1 pyramidal'-brain ( 36 ) , 293 (epithelial) ( 9 , 14 , 42 , 44 , 45 , 46 ) , brain ( 7 ) , neuron-'brain, cerebral cortex' ( 12 ) , neuron-'brain, hippocampus' ( 3 , 5 , 7 , 9 , 15 , 16 , 17 , 22 , 23 , 26 ) , neuron-spinal cord ( 14 , 30 ) , QT-6 (fibroblast) [GluR1 (rat)] ( 45 )

Upstream Regulation
Regulatory protein:
ADRB2 (rat) ( 17 ) , AKAP5 (human) ( 42 ) , AKAP7 (human) ( 42 ) , CDC42 (human) ( 9 ) , CK1D (rat) ( 14 ) , CK1E (rat) ( 14 ) , DOCK9 (human) ( 9 ) , HRas (human) ( 32 ) , Pyk2 (rat) ( 16 ) , RAB5A (human) ( 34 ) , RAC1 (human) ( 9 ) , RAP2A (human) ( 32 ) , RAP2A (mouse) ( 32 )
Putative in vivo kinases:
PAK3 (human) ( 9 ) , PKACA (rat) ( 38 , 41 , 44 )
Kinases, in vitro:
PAK3 (rat) ( 9 ) , PKACA (human) ( 24 , 44 , 46 )
Putative upstream phosphatases:
PPP2CA (human) ( 8 )
Treatments:
1-methoxyoctadecan-1-ol ( 12 ) , 8-Rp-cAMP ( 10 , 41 ) , BDNF ( 25 ) , BEL ( 35 ) , beta-amyloid_42 ( 15 ) , bicuculline ( 5 ) , blast-induced traumatic brain injury ( 6 ) , caffeine ( 28 ) , capsaicin ( 30 ) , CHPG ( 36 ) , ciclosporin ( 16 ) , cocaine ( 11 , 21 , 27 ) , colforsin ( 7 , 17 , 29 , 34 , 36 , 41 , 45 , 46 ) , CPA ( 8 ) , CPT ( 28 ) , DCG_IV ( 36 ) , development ( 39 ) , dopamine ( 38 ) , DPCPX ( 4 ) , electrical_stimulation ( 28 , 37 ) , ephrin_B2 ( 9 ) , fearful stimulus ( 10 ) , FK506 ( 8 , 15 , 16 ) , forced swim test ( 10 ) , fostriecin ( 8 ) , glutamic acid ( 12 ) , gly-aCSF ( 6 ) , heat_shock ( 30 ) , heroin_withdrawal ( 19 ) , hypoxia ( 8 ) , IBMX ( 34 , 38 , 41 , 45 ) , ICI-118,551 ( 17 ) , imipramine ( 26 ) , ischemia/reperfusion ( 40 ) , isoproterenol ( 7 , 10 , 17 ) , lamotrigine ( 26 ) , learning ( 23 , 31 ) , levamfetamine ( 14 , 18 ) , long-term depression ( 20 ) , long-term_potentiation ( 43 ) , MCH ( 33 ) , MCH1R_antagonist ( 33 ) , MK-886 ( 35 ) , MSX-3 ( 28 ) , naltrexone ( 19 ) , NMDA ( 16 ) , norepinephrine ( 7 ) , novel enriched environment ( 7 ) , NSC-87877 ( 5 ) , okadaic_acid ( 8 ) , ondansetron ( 27 ) , PACO ( 35 ) , palmitate ( 38 ) , peptide inhibitor ( 17 , 22 ) , pergolide ( 27 ) , PF-670462 ( 14 ) , phorbol_ester ( 7 ) , PHPS1 ( 5 ) , PKI ( 44 ) , propranolol ( 10 ) , riluzole ( 26 ) , rolipram ( 7 , 29 ) , Rp-cAMPS ( 11 , 38 ) , SCH_23390 ( 4 , 10 , 38 ) , SKF38393 ( 38 ) , SKF81297 ( 10 , 15 , 33 ) , substance_P ( 3 ) , tautomycetin ( 8 ) , TBS ( 2 ) , TTX ( 5 , 9 ) , valproic acid ( 26 )

Downstream Regulation
Effects of modification on GluR1:
activity, induced ( 42 , 44 , 46 ) , intracellular localization ( 3 , 5 , 29 , 35 , 41 ) , receptor internalization, altered ( 9 , 41 ) , receptor internalization, inhibited ( 8 )
Effects of modification on biological processes:
cell motility, induced ( 14 ) , neural plasticity ( 3 , 11 )
Induce interaction with:
GluR2 (rat) ( 23 )

References 

1

Caulino-Rocha A, Rodrigues NC, Ribeiro JA, Cunha-Reis D (2022) Endogenous VIP VPAC Receptor Activation Modulates Hippocampal Theta Burst Induced LTP: Transduction Pathways and GABAergic Mechanisms. Biology (Basel) 11
35625355   Curated Info

2

Rodrigues NC, et al. (2021) Hippocampal CA1 theta burst-induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. Eur J Neurosci 54, 5272-5292
34251729   Curated Info

3

Ribeiro LF, et al. (2021) Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Sci Signal 14
33593997   Curated Info

4

Mao LM, Wang JQ (2020) Upregulation of AMPA receptor GluA1 phosphorylation by blocking adenosine A1 receptors in the male rat forebrain. Brain Behav
31994358   Curated Info

5

Zhang B, Lu W (2017) Src homology 2 domain-containing phosphotyrosine phosphatase 2 (Shp2) controls surface GluA1 protein in synaptic homeostasis. J Biol Chem 292, 15481-15488
28768764   Curated Info

6

Vogel EW, et al. (2017) Primary Blast Injury Depressed Hippocampal Long-Term Potentiation through Disruption of Synaptic Proteins. J Neurotrauma 34, 1063-1073
27573357   Curated Info

7

Diering GH, et al. (2016) Extensive phosphorylation of AMPA receptors in neurons. Proc Natl Acad Sci U S A 113, E4920-7
27482106   Curated Info

8

Stockwell J, et al. (2016) Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury. Neuropharmacology 102, 254-65
26626486   Curated Info

9

Hussain NK, Thomas GM, Luo J, Huganir RL (2015) Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation. Proc Natl Acad Sci U S A 112, E5883-90
26460013   Curated Info

10

Murphy JA, et al. (2014) Phosphorylation of Ser1166 on GluN2B by PKA Is Critical to Synaptic NMDA Receptor Function and Ca2+ Signaling in Spines. J Neurosci 34, 869-79
24431445   Curated Info

11

Sun WL, et al. (2014) Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict Biol 19, 77-86
23461423   Curated Info

12

Jang JY, et al. (2014) Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model. PLoS One 9, e85322
24416390   Curated Info

13

Robison AJ, et al. (2013) Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 33, 4295-307
23467346   Curated Info

14

Li D, et al. (2011) Casein kinase 1 enables nucleus accumbens amphetamine-induced locomotion by regulating AMPA receptor phosphorylation. J Neurochem 118, 237-47
21564097   Curated Info

15

Jürgensen S, et al. (2011) Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 286, 3270-6
21115476   Curated Info

16

Hsin H, Kim MJ, Wang CF, Sheng M (2010) Proline-rich tyrosine kinase 2 regulates hippocampal long-term depression. J Neurosci 30, 11983-93
20826662   Curated Info

17

Joiner ML, et al. (2010) Assembly of a beta2-adrenergic receptor--GluR1 signalling complex for localized cAMP signalling. EMBO J 29, 482-95
19942860   Curated Info

18

Loweth JA, et al. (2010) Transient overexpression of alpha-Ca2+/calmodulin-dependent protein kinase II in the nucleus accumbens shell enhances behavioral responding to amphetamine. J Neurosci 30, 939-49
20089902   Curated Info

19

Edwards S, Graham DL, Whisler KN, Self DW (2009) Phosphorylation of GluR1, ERK, and CREB during spontaneous withdrawal from chronic heroin self-administration. Synapse 63, 224-35
19084907   Curated Info

20

Davies KD, Goebel-Goody SM, Coultrap SJ, Browning MD (2008) Long term synaptic depression that is associated with GluR1 dephosphorylation but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. J Biol Chem 283, 33138-46
18819923   Curated Info

21

Anderson SM, et al. (2008) CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 11, 344-53
18278040   Curated Info

22

Du J, et al. (2008) The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci 28, 68-79
18171924   Curated Info

23

Shukla K, Kim J, Blundell J, Powell CM (2007) Learning-induced glutamate receptor phosphorylation resembles that induced by long term potentiation. J Biol Chem 282, 18100-7
17472959   Curated Info

24

Yuen EY, Liu W, Yan Z (2007) The phosphorylation state of GluR1 subunits determines the susceptibility of AMPA receptors to calpain cleavage. J Biol Chem 282, 16434-40
17428797   Curated Info

25

Caldeira MV, et al. (2007) Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 282, 12619-28
17337442   Curated Info

26

Du J, et al. (2007) The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 32, 793-802
16936714   Curated Info

27

Zhang X, et al. (2007) Reversal of cocaine-induced behavioral sensitization and associated phosphorylation of the NR2B and GluR1 subunits of the NMDA and AMPA receptors. Neuropsychopharmacology 32, 377-87
16794574   Curated Info

28

Quiroz C, et al. (2006) Blockade of adenosine A2A receptors prevents protein phosphorylation in the striatum induced by cortical stimulation. J Neurosci 26, 10808-12
17050719   Curated Info

29

Oh MC, Derkach VA, Guire ES, Soderling TR (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281, 752-8
16272153   Curated Info

30

Jones TL, Sorkin LS (2005) Activated PKA and PKC, but not CaMKIIalpha, are required for AMPA/Kainate-mediated pain behavior in the thermal stimulus model. Pain 117, 259-70
16150547   Curated Info

31

Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M (2005) Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Neuroscience 136, 397-403
16182449   Curated Info

32

Zhu Y, et al. (2005) Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46, 905-16
15953419   Curated Info

33

Georgescu D, et al. (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 25, 2933-40
15772353   Curated Info

34

Brown TC, Tran IC, Backos DS, Esteban JA (2005) NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron 45, 81-94
15629704   Curated Info

35

Ménard C, et al. (2005) AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A(2) and 5-lipoxygenase activities. Hippocampus 15, 370-80
15630695   Curated Info

36

Harris SL, Gallyas F, Molnar E (2004) Activation of metabotropic glutamate receptors does not alter the phosphorylation state of GluR1 AMPA receptor subunit at serine 845 in perirhinal cortical neurons. Neurosci Lett 372, 132-6
15531103   Curated Info

37

Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92, 2853-8
15212428   Curated Info

38

Swayze RD, et al. (2004) Modulation of dopamine mediated phosphorylation of AMPA receptors by PSD-95 and AKAP79/150. Neuropharmacology 47, 764-78
15458848   Curated Info

39

Li AJ, et al. (2003) Differential phosphorylation at serine sites in glutamate receptor-1 within neonatal rat hippocampus. Neurosci Lett 341, 41-4
12676339   Curated Info

40

Takagi Y, et al. (2003) Transient global ischemia enhances phosphorylation of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor in the hippocampal CA1 region in rats. Neurosci Lett 341, 33-6
12676337   Curated Info

41

Esteban JA, et al. (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6, 136-43
12536214   Curated Info

42

Tavalin SJ, et al. (2002) Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 22, 3044-51
11943807   Curated Info

43

Huang CC, Liang YC, Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem 276, 48108-17
11679581   Curated Info

44

Banke TG, et al. (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20, 89-102
10627585   Curated Info

45

Mammen AL, Kameyama K, Roche KW, Huganir RL (1997) Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem 272, 32528-33
9405465   Curated Info

46

Roche KW, et al. (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179-88
8663994   Curated Info