Ser172
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser172  -  TIF1A (human)

Site Information
GDVDVsDsDDEDDNL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 470002

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 1 , 17 ) , [32P] bio-synthetic labeling ( 17 ) , immunoprecipitation ( 17 ) , mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 16 , 18 , 19 , 20 ) , mutation of modification site ( 7 , 17 ) , phospho-antibody ( 1 , 17 ) , phosphopeptide mapping ( 1 , 17 ) , western blotting ( 1 , 17 )
Disease tissue studied:
bone cancer ( 17 ) , breast cancer ( 4 , 5 , 9 , 10 ) , breast ductal carcinoma ( 4 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, triple negative ( 2 ) , leukemia ( 13 ) , acute myelogenous leukemia ( 13 ) , lung cancer ( 10 ) , non-small cell lung cancer ( 10 ) , lymphoma ( 6 ) , Burkitt's lymphoma ( 6 ) , follicular lymphoma ( 6 ) , mantle cell lymphoma ( 6 ) , melanoma skin cancer ( 3 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Putative in vivo kinases:
CK2A1 (human) ( 1 , 7 , 17 )
Kinases, in vitro:
CK2A1 (human) ( 17 )
Putative upstream phosphatases:
CTDP1 (human) ( 17 )
Phosphatases, in vitro:
CTDP1 (human) ( 17 )
Treatments:
DMAT ( 17 ) , heat_shock ( 1 ) , siRNA ( 7 )

Downstream Regulation
Effects of modification on TIF1A:
activity, induced ( 17 ) , intracellular localization ( 7 ) , molecular association, regulation ( 7 , 17 ) , protein stabilization ( 7 )
Effects of modification on biological processes:
cell cycle regulation ( 17 ) , chromatin organization, altered ( 17 ) , transcription, induced ( 1 , 7 , 17 )
Induce interaction with:
DNA ( 7 )
Inhibit interaction with:
POLM (human) ( 1 ) , TWISTNB (human) ( 17 )

References 

1

Zhao Z, et al. (2016) Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res 44, 8144-52
27257073   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

6

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

7

Nguyen le XT, Mitchell BS (2013) Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA. Proc Natl Acad Sci U S A 110, 20681-6
24297901   Curated Info

8

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

9

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

10

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

11

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

12

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

13

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

14

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

15

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

16

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

17

Bierhoff H, Dundr M, Michels AA, Grummt I (2008) Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol Cell Biol 28, 4988-98
18559419   Curated Info

18

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

19

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

20

Schlosser A, et al. (2002) Identification of protein phosphorylation sites by combination of elastase digestion, immobilized metal affinity chromatography, and quadrupole-time of flight tandem mass spectrometry. Proteomics 2, 911-8
12124936   Curated Info