Ser44
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser44  -  TIF1A (human)

Site Information
LENDFFNsPPRKTVR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 470000

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 25 ) , mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 26 ) , mutation of modification site ( 17 , 25 ) , phospho-antibody ( 17 ) , phosphopeptide mapping ( 25 ) , western blotting ( 17 )
Disease tissue studied:
breast cancer ( 4 , 10 ) , breast ductal carcinoma ( 4 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 , 4 ) , lung cancer ( 10 ) , non-small cell lung cancer ( 10 ) , melanoma skin cancer ( 2 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Kinases, in vitro:
CDK2 (human) ( 25 )
Phosphatases, in vitro:
PPP2CA (human) ( 25 )
Treatments:
acadesine ( 17 ) , calyculin_A ( 25 ) , ischemia ( 4 ) , rapamycin ( 20 , 25 )

Downstream Regulation
Effects of modification on TIF1A:
activity, induced ( 25 )
Effects of modification on biological processes:
transcription, altered ( 25 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

3

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

6

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

7

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

8

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

9

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

10

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

11

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

12

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

13

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

14

Guo A (2011) CST Curation Set: 11988; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

15

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

16

Zhou J (2010) CST Curation Set: 9270; Year: 2010; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

17

Hoppe S, et al. (2009) AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci U S A 106, 17781-6
19815529   Curated Info

18

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

19

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

20

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

21

Guo A (2008) CST Curation Set: 5570; Year: 2008; Biosample/Treatment: cell line, MKN-45/Su11274; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) CDKs Substrate Antibody Cat#: 2324, PTMScan(R) Phospho-CDK Substrate Motif (K/RS*PXK/R) Immunoaffinity Beads Cat#: 1981
Curated Info

22

Guo A (2008) CST Curation Set: 5571; Year: 2008; Biosample/Treatment: cell line, MKN-45/Su11274; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) CDKs Substrate Antibody Cat#: 2324, PTMScan(R) Phospho-CDK Substrate Motif (K/RS*PXK/R) Immunoaffinity Beads Cat#: 1981
Curated Info

23

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

24

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

25

Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18, 423-34
15004009   Curated Info

26

Schlosser A, et al. (2002) Identification of protein phosphorylation sites by combination of elastase digestion, immobilized metal affinity chromatography, and quadrupole-time of flight tandem mass spectrometry. Proteomics 2, 911-8
12124936   Curated Info