Thr53
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr53  -  NCCT (mouse)

Site Information
GstLyMRtFGYNtID   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 469616

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 9 ) , mass spectrometry ( 11 ) , mutation of modification site ( 4 , 8 ) , phospho-antibody ( 1 , 2 , 3 , 5 , 6 , 7 , 9 , 10 , 12 , 13 ) , western blotting ( 1 , 2 , 3 , 4 , 6 , 7 , 9 , 10 , 12 )
Relevant cell line - cell type - tissue:
'kidney, cortex' ( 5 , 6 ) , 293 (epithelial) ( 10 ) , COS (fibroblast) ( 4 ) , COS7 (fibroblast) ( 8 ) , kidney ( 2 , 3 , 6 , 7 , 9 , 11 , 12 ) , mpkCCD (renal) ( 13 ) , renal ( 1 ) , testis ( 6 )

Upstream Regulation
Regulatory protein:
NCCT (mouse) ( 9 ) , STLK3 (mouse) ( 6 , 7 ) , WNK4 (mouse) ( 6 , 7 )
Treatments:
angiotensin_2 ( 6 ) , choline ( 6 ) , corticosterone ( 3 ) , day:night variation ( 3 ) , FK506 ( 1 , 10 ) , high-potassium diet ( 6 , 9 , 12 ) , high-salt diet ( 12 ) , hypotonic_buffer ( 13 ) , IL-18 ( 4 ) , KCl ( 6 ) , low-potassium diet ( 6 , 12 ) , low-salt diet ( 7 , 12 ) , spironolactone ( 6 )

Downstream Regulation
Effects of modification on NCCT:
activity, induced ( 5 ) , ubiquitination ( 8 )

References 

1

Ishizawa K, et al. (2019) Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling. Proc Natl Acad Sci U S A 116, 3155-3160
30718414   Curated Info

2

Savas Ü, et al. (2016) 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 291, 16904-19
27298316   Curated Info

3

Ivy JR, et al. (2016) Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter. Hypertension 67, 1029-37
26953322   Curated Info

4

Wang J, et al. (2015) Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med 21, 820-6
26099046   Curated Info

5

Arystarkhova E, et al. (2014) Paradoxical activation of the sodium chloride cotransporter (NCC) without hypertension in kidney deficient in a regulatory subunit of Na,K-ATPase, FXYD2. Physiol Rep 2
25472608   Curated Info

6

Castañeda-Bueno M, et al. (2014) Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved. Am J Physiol Renal Physiol 306, F1507-19
24761002   Curated Info

7

Yang SS, et al. (2013) Phosphorylation regulates NCC stability and transporter activity in vivo. J Am Soc Nephrol 24, 1587-97
23833262   Curated Info

8

Hossain Khan MZ, et al. (2012) Phosphorylation of Na-Cl cotransporter by OSR1 and SPAK kinases regulates its ubiquitination. Biochem Biophys Res Commun 425, 456-61
22846565   Curated Info

9

McCormick JA, et al. (2011) Overexpression of the sodium chloride cotransporter is not sufficient to cause familial hyperkalemic hypertension. Hypertension 58, 888-94
21896937   Curated Info

10

Hoorn EJ, et al. (2011) The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med 17, 1304-9
21963515   Curated Info

11

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

12

Vallon V, et al. (2009) Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 297, F704-12
19570885   Curated Info

13

Richardson C, et al. (2008) Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci 121, 675-84
18270262   Curated Info