Ser118
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser118  -  ING5 (mouse)

Site Information
LKDRMDGsDFESTGA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 469895
Associated spectra:  2 CST

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 )
Disease tissue studied:
anthrax infection ( 15 ) , leukemia ( 12 ) , acute myelogenous leukemia ( 12 ) , melanoma skin cancer ( 23 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 , 10 ) , 'brain, embryonic' ( 26 ) , 'fat, brown' ( 16 ) , 'stem, embryonic' ( 21 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 20 ) , 32Dcl3 (myeloid) ( 20 ) , 3T3 (fibroblast) [CDC42 (human), transfection] ( 8 ) , 3T3 (fibroblast) [KRas (human), transfection] ( 8 ) , 3T3 (fibroblast) ( 8 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , blood ( 12 ) , brain ( 16 , 18 , 27 ) , ES-J1 (stem) ( 19 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 6 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 6 ) , HL-1 (myocyte) ( 6 ) , kidney ( 16 ) , liver ( 2 , 9 , 16 , 25 , 28 ) , lung ( 16 ) , macrophage-bone marrow ( 17 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 17 ) , MEF (fibroblast) ( 11 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 13 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 11 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 11 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 14 ) , RAW 264.7 (macrophage) ( 5 ) , RAW 267.4 (macrophage) ( 22 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 23 ) , spleen ( 15 , 16 ) , testis ( 16 )

Upstream Regulation
Treatments:
IFN-gamma ( 22 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

2

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

3

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

4

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

5

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

6

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Gnad F, et al. (2013) Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Mol Cell Proteomics 12, 2070-80
23608596   Curated Info

9

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

10

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

11

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

12

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

13

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

14

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

15

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

16

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

17

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

18

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

19

Zhou J (2010) CST Curation Set: 9407; Year: 2010; Biosample/Treatment: cell line, ES J1/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)XpSX(K/R)Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) PKC Substrate Antibody Cat#: 2261, PTMScan(R) Phospho-PKC Substrate Motif (K/RXpSXK/R) Immunoaffinity Beads Cat#: 1985
Curated Info

20

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

21

Li H, et al. (2009) SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 8, 1839-49
19366988   Curated Info

22

Trost M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143-54
19144319   Curated Info

23

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

24

Guo A (2007) CST Curation Set: 3619; Year: 2007; Biosample/Treatment: cell line, E1-1796/rapamycin; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

25

Guo A (2007) CST Curation Set: 2921; Year: 2007; Biosample/Treatment: tissue, liver/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST](D/E)X(D/E) Antibodies Used to Purify Peptides prior to LCMS: Phospho(Ser/Thr) CKII Substrate Antibody (polyAb) Cat#: 5808, PTMScan(R) Phospho-CK Substrate Motif (S*/T*D/EXD/E) Immunoaffinity Beads Cat#: 1994
Curated Info

26

Guo A (2007) CST Curation Set: 2717; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST](D/E)X(D/E)
Curated Info

27

Guo A (2007) CST Curation Set: 2718; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST](D/E)X(D/E)
Curated Info

28

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info