Ser386
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser386  -  IRF3 (human)

Site Information
ARVGGAssLENtVDL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448684

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 15 ) , immunoprecipitation ( 2 , 4 , 5 , 8 , 15 ) , mass spectrometry ( 2 , 4 , 7 , 9 ) , mass spectrometry (in vitro) ( 7 , 8 ) , mutation of modification site ( 2 , 4 , 5 , 7 , 8 , 11 , 13 , 14 , 15 ) , phospho-antibody ( 2 , 3 , 5 , 6 , 13 , 15 ) , phosphoamino acid analysis ( 15 ) , phosphopeptide mapping ( 15 ) , western blotting ( 2 , 3 , 4 , 5 , 6 , 8 , 13 )
Disease tissue studied:
brain cancer ( 13 ) , glioblastoma ( 13 ) , glioblastoma multiforme ( 13 ) , glioma ( 13 ) , fibrosarcoma of soft tissue ( 8 , 13 , 14 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 5 , 7 ) , E.coli (bacterial) [IKKE (human), transfection] ( 9 ) , HEK293T (epithelial) ( 2 , 4 , 13 ) , HeLa (cervical) ( 3 , 6 , 11 ) , L929 (fibroblast) ( 8 , 13 , 14 , 15 ) , U373 MG (glial) ( 13 )

Upstream Regulation
Regulatory protein:
ADAR (human) ( 3 ) , DHCR7 (human) ( 2 ) , IKKE (human) ( 13 ) , MAVS (human) ( 3 ) , MST1 (human) ( 5 ) , ROBO3 (human) ( 6 ) , TBK1 (human) ( 13 ) , TICAM1 (human) ( 13 )
Putative in vivo kinases:
IKKE (human) ( 9 ) , TBK1 (human) ( 2 )
Kinases, in vitro:
IKKE (human) ( 8 ) , TBK1 (human) ( 7 , 12 )
Treatments:
AY9944 ( 2 ) , LPS ( 13 ) , Newcastle_disease_virus ( 15 ) , poly(I-C) ( 13 ) , virus infection ( 2 , 3 , 11 , 13 )

Downstream Regulation
Effects of modification on IRF3:
activity, induced ( 11 ) , enzymatic activity, induced ( 2 ) , intracellular localization ( 15 ) , molecular association, regulation ( 2 , 8 , 10 , 12 , 13 , 14 ) , phosphorylation ( 7 ) , protein conformation ( 8 , 12 )
Effects of modification on biological processes:
transcription, altered ( 7 , 14 )
Induce interaction with:
CBP (human) ( 10 ) , IRF3 (human) ( 2 , 12 , 13 ) , p300 (human) ( 8 ) , p300 (mouse) ( 14 )

References 

1

Cheon H, Holvey-Bates EG, McGrail DJ, Stark GR (2021) PD-L1 sustains chronic, cancer cell-intrinsic responses to type I interferon, enhancing resistance to DNA damage. Proc Natl Acad Sci U S A 118
34799452   Curated Info

2

Xiao J, et al. (2019) Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity
31882361   Curated Info

3

Pfaller CK, et al. (2018) Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 16, e2006577
30496178   Curated Info

4

Liu S, et al. (2017) Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses. Cell Host Microbe 21, 754-768.e5
28618271   Curated Info

5

Meng F, et al. (2016) Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev 30, 1086-100
27125670   Curated Info

6

Song S, et al. (2016) Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus. Mol Cell Biol 36, 1136-51
26811330   Curated Info

7

Bergstroem B, et al. (2010) Identification of a novel in vivo virus-targeted phosphorylation site in interferon regulatory factor-3 (IRF3). J Biol Chem 285, 24904-14
20511230   Curated Info

8

Takahasi K, et al. (2010) Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change. Genes Cells 15, 901-10
20604809   Curated Info

9

Fujii K, Nakamura S, Takahashi K, Inagaki F (2010) Systematic characterization by mass spectrometric analysis of phosphorylation sites in IRF-3 regulatory domain activated by IKK-i. J Proteomics 73, 1196-203
20170763   Curated Info

10

Chen W, et al. (2008) Contribution of Ser386 and Ser396 to activation of interferon regulatory factor 3. J Mol Biol 379, 251-60
18440553   Curated Info

11

Clément JF, et al. (2008) Phosphorylation of IRF-3 on Ser 339 generates a hyperactive form of IRF-3 through regulation of dimerization and CBP association. J Virol 82, 3984-96
18272581   Curated Info

12

Panne D, McWhirter SM, Maniatis T, Harrison SC (2007) Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch. J Biol Chem 282, 22816-22
17526488   Curated Info

13

Mori M, et al. (2004) Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem 279, 9698-702
14703513   Curated Info

14

Suhara W, et al. (2000) Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300. J Biochem (Tokyo) 128, 301-7
10920266   Curated Info

15

Yoneyama M, et al. (1998) Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 17, 1087-95
9463386   Curated Info