Ser101
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser101  -  DYNC1I2 (human)

Site Information
stPsEAGsQDsGDGA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 469265
Available spectra:  1 CST

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 )
Disease tissue studied:
breast cancer ( 3 , 4 ) , breast ductal carcinoma ( 3 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 , 3 ) , leukemia ( 12 ) , acute myelogenous leukemia ( 12 ) , lung cancer ( 7 , 8 , 10 ) , non-small cell lung cancer ( 10 ) , non-small cell lung adenocarcinoma ( 8 ) , small-cell lung cancer ( 7 ) , ovarian cancer ( 3 ) , pancreatic ductal adenocarcinoma ( 6 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Treatments:
ischemia ( 3 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

5

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

6

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

7

Rikova K, Hall B (2013) CST Curation Set: 20735, 21162, 30155, 30156, 30157; Year: 2013; Biosample/Treatment: cell line, DMS53, H526, H69, H82, H446; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY, p[ST], RXXp[ST], pSQ, p[ST]QG, LXRXXp[ST], p[ST]P
Curated Info

8

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

9

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

10

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

11

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

12

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

13

Zhou J (2011) CST Curation Set: 11707; Year: 2011; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb Cat#: 6966, PTMScan(R) Phospho-ATM/ATR Substrate Motif (S*/T*QG) Immunoaffinity Beads Cat#: 6969
Curated Info

14

Zhou J (2011) CST Curation Set: 11708; Year: 2011; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb Cat#: 6966, PTMScan(R) Phospho-ATM/ATR Substrate Motif (S*/T*QG) Immunoaffinity Beads Cat#: 6969
Curated Info

15

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

16

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

17

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

18

Matsuoka S, et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-6
17525332   Curated Info

19

Possemato A (2006) CST Curation Set: 1664; Year: 2006; Biosample/Treatment: cell line, NCI-H1703/serum starved; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P , PTMScan(R) PLK Binding Motif (SpTP) Immunoaffinity Beads Cat#: 1995
Curated Info

20

Possemato A (2006) CST Curation Set: 1665; Year: 2006; Biosample/Treatment: cell line, NCI-H1703/serum starved; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P , PTMScan(R) PLK Binding Motif (SpTP) Immunoaffinity Beads Cat#: 1995
Curated Info