Ser132
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser132  -  USP20 (mouse)

Site Information
AVADEGEsEsEDDDL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 469013

In vivo Characterization
Methods used to characterize site in vivo:
[32P] ATP in vitro ( 1 ) , immunoprecipitation ( 1 ) , mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ) , mutation of modification site ( 1 ) , phospho-antibody ( 1 ) , western blotting ( 1 )
Disease tissue studied:
leukemia ( 15 ) , acute myelogenous leukemia ( 15 ) , liver cancer ( 1 ) , hepatocellular carcinoma ( 1 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 5 , 11 ) , 'fat, brown' ( 18 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 20 ) , 32Dcl3 (myeloid) ( 20 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 2 ) , blood ( 15 ) , brain ( 18 , 19 ) , heart ( 12 , 18 ) , HEK293T (epithelial) ( 1 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 8 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 8 ) , HL-1 (myocyte) ( 8 ) , Huh7 (hepatic) ( 1 ) , kidney ( 18 ) , liver ( 3 , 10 , 14 , 18 , 21 ) , macrophage-peritoneum [MPRIP (mouse), homozygous knockout] ( 13 ) , MC3T3-E1 (preosteoblast) ( 6 ) , MEF (fibroblast) ( 17 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 16 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 17 ) , pancreas ( 18 ) , RAW 264.7 (macrophage) ( 7 ) , spleen ( 18 ) , testis ( 18 )

Upstream Regulation
Regulatory protein:
ADRB1 (mouse) ( 12 )
Kinases, in vitro:
mTOR (mouse) ( 1 )
Treatments:
high-fat diet ( 1 ) , high_glucose ( 1 ) , insulin ( 1 ) , rapamycin ( 1 ) , refeeding ( 1 ) , sucrose ( 1 )

Downstream Regulation
Effects of modification on USP20:
molecular association, regulation ( 1 ) , protein stabilization ( 1 ) , ubiquitination ( 1 )
Effects of modification on biological processes:
signaling pathway regulation ( 1 )
Induce interaction with:
AMFR (mouse) ( 1 )

References 

1

Lu XY, et al. (2020) Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature
33177714   Curated Info

2

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

3

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

4

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

5

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

6

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

7

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

8

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

11

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

12

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

13

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

14

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

15

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

16

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

17

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

18

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

19

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

20

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

21

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info