Ser758
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser758  -  MLK3 (human)

Site Information
GtPGtPRsPPLGLIS   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448611

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 11 ) , immunoassay ( 4 ) , immunoprecipitation ( 1 ) , mass spectrometry ( 2 , 3 , 4 , 5 , 7 , 8 , 9 , 10 , 11 ) , mutation of modification site ( 1 ) , phosphopeptide mapping ( 11 ) , western blotting ( 1 )
Disease tissue studied:
breast cancer ( 3 ) , breast ductal carcinoma ( 3 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 ) , colorectal cancer ( 1 ) , colorectal carcinoma ( 1 ) , acute myelogenous leukemia ( 4 ) , chronic lymphocytic leukemia ( 4 ) , hairy cell leukemia ( 4 )
Relevant cell line - cell type - tissue:
293 (epithelial) [CDC42 iso1 (human)] ( 11 ) , 293 (epithelial) [MLK1 (human)] ( 11 ) , 293 (epithelial) ( 1 ) , A498 (renal) ( 8 ) , blood ( 4 ) , breast ( 2 , 3 ) , HCT116 (intestinal) ( 1 , 9 ) , HeLa S3 (cervical) ( 10 ) , HeLa_Meta (cervical) ( 7 ) , HeLa_Pro (cervical) ( 7 ) , HeLa_Telo (cervical) ( 7 ) , Jurkat (T lymphocyte) ( 5 ) , JY (lymphoblastoid) ( 4 ) , MDA-MB-435S (breast cell) ( 9 ) , mononuclear-blood ( 4 ) , MV4-11 (macrophage) ( 9 )

Upstream Regulation
Kinases, in vitro:
ERK1 (human) ( 1 )
Treatments:
nocodazole ( 10 ) , thymidine ( 10 )

Downstream Regulation
Effects of modification on MLK3:
molecular association, regulation ( 1 )
Inhibit interaction with:
BRAF (human) ( 1 )

References 

1

Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN (2017) MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene
29084209   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Cobbold M, et al. (2013) MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. Sci Transl Med 5, 203ra125
24048523   Curated Info

5

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

6

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

7

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

8

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

9

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

10

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

11

Vacratsis PO, Phinney BS, Gage DA, Gallo KA (2002) Identification of in vivo phosphorylation sites of MLK3 by mass spectrometry and phosphopeptide mapping. Biochemistry 41, 5613-24
11969422   Curated Info