Ser10
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser10  -  p27Kip1 (mouse)

Site Information
NVRVsNGsPsLERMD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447874

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 27 ) , [32P] bio-synthetic labeling ( 27 , 28 ) , electrophoretic mobility shift ( 28 , 29 ) , mass spectrometry ( 2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 15 , 17 , 18 , 19 , 20 , 21 , 23 ) , microscopy-colocalization with upstream kinase ( 16 ) , mutation of modification site ( 12 , 16 , 22 , 25 , 27 , 28 , 29 ) , phospho-antibody ( 12 , 14 , 16 , 24 , 25 , 27 , 30 ) , western blotting ( 12 , 14 , 24 , 25 )
Disease tissue studied:
anthrax infection ( 13 ) , leukemia ( 11 ) , acute myelogenous leukemia ( 11 ) , melanoma skin cancer ( 20 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 3 , 7 ) , 'stem, neural' [CDK5 (mouse), homozygous knockout] ( 16 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 19 ) , 32Dcl3 (myeloid) ( 19 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 28 , 30 ) , 3T3 (fibroblast) ( 21 ) , B lymphocyte-spleen ( 27 ) , BaF3 ('B lymphocyte, precursor') ( 14 ) , blood ( 11 ) , brain ( 15 , 17 , 25 ) , heart ( 8 ) , kidney ( 15 ) , liver ( 6 , 10 , 15 , 23 ) , liver [leptin (mouse), homozygous knockout] ( 10 ) , lung ( 12 , 15 ) , lung [p27Kip1 (mouse), genetic knockin] ( 12 ) , MC3T3-E1 (preosteoblast) ( 2 ) , MEF (fibroblast) ( 9 , 22 , 24 , 25 ) , MEF (fibroblast) [IGF1R (mouse)] ( 27 ) , mesangial ( 29 ) , mpkCCD (renal) ( 18 ) , pancreas ( 15 ) , RAW 264.7 (macrophage) ( 4 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 20 ) , spleen ( 13 , 15 ) , T lymphocyte-blood ( 30 ) , testis ( 15 )

Upstream Regulation
Regulatory protein:
CCND1 (mouse) ( 24 )
Putative in vivo kinases:
CDK5 (mouse) ( 16 ) , DYRK1B (mouse) ( 28 )
Kinases, in vitro:
Akt1 (human) ( 26 ) , DYRK1B (mouse) ( 28 )
Treatments:
high_cell_density ( 25 ) , IL-3 ( 14 ) , NAG-thiazoline ( 21 ) , okadaic_acid ( 21 ) , ponasterone_A ( 14 ) , PUGNAc ( 21 ) , serum_starvation ( 25 ) , urethane ( 12 )

Downstream Regulation
Effects of modification on p27Kip1:
intracellular localization ( 12 , 25 ) , protein stabilization ( 14 , 25 , 27 , 28 )
Effects of modification on biological processes:
cell cycle regulation ( 28 ) , cell growth, altered ( 25 ) , cell growth, induced ( 16 )
Inhibit interaction with:
CCNA1 (mouse) ( 25 ) , CCND1 (mouse) ( 25 ) , CCNE1 (mouse) ( 25 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

3

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

4

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

5

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

6

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

9

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

10

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

11

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

12

Serres MP, et al. (2011) Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro. Oncogene 30, 2846-58
21317921   Curated Info

13

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

14

Bustany S, Tchakarska G, Sola B (2011) Cyclin D1 regulates p27(Kip1) stability in B cells. Cell Signal 23, 171-9
20837141   Curated Info

15

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

16

Zheng YL, et al. (2010) Phosphorylation of p27Kip1 at Thr187 by cyclin-dependent kinase 5 modulates neural stem cell differentiation. Mol Biol Cell 21, 3601-14
20810788   Curated Info

17

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

18

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

19

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

20

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

21

Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105, 13793-8
18779572   Curated Info

22

Susaki E, Nakayama K, Nakayama KI (2007) Cyclin D2 translocates p27 out of the nucleus and promotes its degradation at the G0-G1 transition. Mol Cell Biol 27, 4626-40
17452458   Curated Info

23

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

24

Li Z, et al. (2006) Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res 66, 9986-94
17047061   Curated Info

25

Besson A, et al. (2006) A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev 20, 47-64
16391232   Curated Info

26

Nacusi LP, Sheaff RJ (2006) Akt1 sequentially phosphorylates p27kip1 within a conserved but non-canonical region. Cell Div 1, 11
16780593   Curated Info

27

Kotake Y, Nakayama K, Ishida N, Nakayama KI (2005) Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J Biol Chem 280, 1095-102
15528185   Curated Info

28

Deng X, et al. (2004) The cyclin-dependent kinase inhibitor p27Kip1 is stabilized in G(0) by Mirk/dyrk1B kinase. J Biol Chem 279, 22498-504
15010468   Curated Info

29

Wolf G, et al. (2003) Erk 1,2 phosphorylates p27(Kip1): Functional evidence for a role in high glucose-induced hypertrophy of mesangial cells. Diabetologia 46, 1090-9
12856081   Curated Info

30

Rodier G, et al. (2001) p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J 20, 6672-82
11726503   Curated Info