Thr560
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr560  -  PKCZ (rat)

Site Information
TSEPVQLtPDDEDVI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447572

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 6 ) , immunoprecipitation ( 5 ) , mass spectrometry ( 2 , 3 ) , microscopy-colocalization with upstream kinase ( 4 ) , mutation of modification site ( 4 , 6 , 7 ) , phospho-antibody ( 1 , 5 , 6 ) , western blotting ( 1 , 5 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 2 ) , 'brain, hippocampus' ( 5 ) , 'kidney, cortex' ( 3 ) , 'neuron, hippocampal'-brain ( 1 ) , adipocyte-adipose tissue ( 7 ) , kidney ( 2 ) , L6 (myoblast) ( 7 ) , lung ( 2 ) , myocyte-heart ( 4 ) , Rat2 (fibroblast) ( 6 ) , stomach ( 2 )

Upstream Regulation
Regulatory protein:
IL-1RA (human) ( 1 )
Putative in vivo kinases:
PDK1 (rat) ( 5 )
Kinases, in vitro:
PDK1 (rat) ( 6 ) , PKCZ (rat) ( 7 )
Treatments:
H-89 ( 5 ) , ifenprodil ( 1 ) , KN-93 ( 5 ) , long-term_potentiation ( 5 ) , PP2 ( 1 ) , U0126 ( 5 ) , wortmannin ( 5 )

Downstream Regulation
Effects of modification on PKCZ:
enzymatic activity, induced ( 7 ) , phosphorylation ( 4 ) , protein degradation ( 6 )
Effects of modification on biological processes:
cytoskeletal reorganization ( 4 )
Induce interaction with:
MYO1C (mouse) ( 4 ) , TPM1 (rat) ( 4 )
Inhibit interaction with:
TNNI1 (mouse) ( 4 ) , TNNT1 (human) ( 4 ) , desmin (rat) ( 4 )

References 

1

Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V (2018) Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation 15, 36
29422059   Curated Info

2

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

3

Feric M, et al. (2011) Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule. Am J Physiol Cell Physiol 300, C755-70
21209370   Curated Info

4

Wu SC, Solaro RJ (2007) Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J Biol Chem 282, 30691-8
17724026   Curated Info

5

Kelly MT, Crary JF, Sacktor TC (2007) Regulation of protein kinase Mzeta synthesis by multiple kinases in long-term potentiation. J Neurosci 27, 3439-44
17392460   Curated Info

6

Le Good JA, Brindley DN (2004) Molecular mechanisms regulating protein kinase Czeta turnover and cellular transformation. Biochem J 378, 83-92
14580237   Curated Info

7

Standaert ML, et al. (2001) Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 40, 249-55
11141077   Curated Info

8

Le Good JA, et al. (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281, 2042-5
9748166   Curated Info