Ser1935
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1935  -  MYH10 (human)

Site Information
LRrGGPIsFsssrSG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 4730818

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 11 ) , mutation of modification site ( 1 , 3 )
Disease tissue studied:
bone cancer ( 3 ) , breast cancer ( 4 , 9 ) , breast ductal carcinoma ( 4 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 ) , cervical cancer ( 11 ) , cervical adenocarcinoma ( 11 ) , leukemia ( 1 ) , T cell leukemia ( 1 ) , lung cancer ( 6 ) , non-small cell lung adenocarcinoma ( 6 ) , ovarian cancer ( 4 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Putative in vivo kinases:
PKCZ (human) ( 1 )
Treatments:
ischemia ( 4 ) , nocodazole ( 11 ) , t-ACPD ( 1 )

Downstream Regulation
Effects of modification on MYH10:
intracellular localization ( 1 ) , molecular association, regulation ( 1 )
Effects of modification on biological processes:
cytoskeletal reorganization ( 1 , 3 )
Induce interaction with:
ACTA1 (human) ( 1 ) , MYH10 (human) ( 1 )

References 

1

Schiffhauer ES, et al. (2019) Myosin IIB assembly state determines its mechanosensitive dynamics. J Cell Biol
30655296   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Juanes-Garcia A, et al. (2015) A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front-back polarity. J Cell Biol 209, 23-32
25869664   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

6

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

7

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

8

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

9

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

10

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

11

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info