Ser153
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser153  -  ESF1 (human)

Site Information
FKIDsNIsPKKDSKE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 467581

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 15 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 )
Disease tissue studied:
breast cancer ( 8 , 18 ) , breast ductal carcinoma ( 8 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 8 ) , cervical cancer ( 29 ) , cervical adenocarcinoma ( 29 ) , leukemia ( 21 ) , acute myelogenous leukemia ( 21 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 17 ) , acute megakaryoblastic leukemia (M7) ( 17 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 17 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 17 ) , acute myeloblastic leukemia, without maturation (M1) ( 17 ) , lung cancer ( 11 , 18 , 23 , 27 ) , non-small cell lung cancer ( 18 ) , non-small cell lung adenocarcinoma ( 11 , 23 ) , lymphoma ( 9 ) , B cell lymphoma ( 17 ) , Burkitt's lymphoma ( 9 ) , non-Hodgkin's lymphoma ( 17 ) , follicular lymphoma ( 9 ) , mantle cell lymphoma ( 9 ) , neuroblastoma ( 16 ) , ovarian cancer ( 8 ) , multiple myeloma ( 17 ) , melanoma skin cancer ( 6 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 28 ) , 293 (epithelial) ( 33 ) , 293E (epithelial) ( 22 ) , 786-O (renal) [VHL (human), transfection] ( 4 ) , 786-O (renal) ( 4 ) , A549 (pulmonary) ( 12 ) , AML-193 (monocyte) ( 17 ) , breast ( 2 , 8 ) , BT-20 (breast cell) ( 18 ) , BT-549 (breast cell) ( 18 ) , Calu 6 (pulmonary) ( 18 ) , CL1-0 (pulmonary) ( 27 ) , CL1-1 (pulmonary) ( 27 ) , CL1-2 (pulmonary) ( 27 ) , CL1-5 (pulmonary) ( 27 ) , CMK (megakaryoblast) ( 17 ) , CTS (myeloid) ( 17 ) , DOHH2 ('B lymphocyte, precursor') ( 17 ) , FL-318 (B lymphocyte) ( 9 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 19 ) , Flp-In T-Rex-293 (epithelial) ( 19 ) , H2009 (pulmonary) ( 18 ) , H2077 (pulmonary) ( 18 ) , H2887 (pulmonary) ( 18 ) , H322M (pulmonary) ( 18 ) , HCC1359 (pulmonary) ( 18 ) , HCC1937 (breast cell) ( 18 ) , HCC2279 (pulmonary) ( 18 ) , HCC366 (pulmonary) ( 18 ) , HCC4006 (pulmonary) ( 18 ) , HCC78 (pulmonary) ( 18 ) , HCC827 (pulmonary) ( 18 ) , HCT116 (intestinal) ( 34 ) , HEK293T (epithelial) ( 5 ) , HEL (erythroid) ( 17 ) , HeLa (cervical) ( 1 , 7 , 15 , 26 , 36 , 38 , 39 ) , HeLa S3 (cervical) [PLK1 (human), knockdown, Tet-inducible PLK1 siRNA] ( 24 ) , HeLa S3 (cervical) ( 24 , 29 , 31 ) , HOP62 (pulmonary) ( 18 ) , HUES-7 ('stem, embryonic') ( 32 ) , HUES-9 ('stem, embryonic') ( 25 ) , JEKO-1 (B lymphocyte) ( 9 ) , Jurkat (T lymphocyte) ( 13 , 35 , 37 ) , K562 (erythroid) ( 15 , 30 ) , Kasumi-1 (myeloid) ( 17 ) , KG-1 (myeloid) ( 17 , 21 ) , LCLC-103H (pulmonary) ( 18 ) , LOU-NH91 (squamous) ( 18 ) , lung ( 11 ) , MCF-7 (breast cell) ( 18 ) , MDA-MB-231 (breast cell) ( 18 ) , MDA-MB-468 (breast cell) ( 18 ) , MV4-11 (macrophage) ( 17 ) , NB10 (neural crest) ( 16 ) , NCI-H1395 (pulmonary) ( 18 ) , NCI-H1568 (pulmonary) ( 18 ) , NCI-H157 (pulmonary) ( 18 ) , NCI-H1648 (pulmonary) ( 18 ) , NCI-H1666 (pulmonary) ( 18 ) , NCI-H2030 (pulmonary) ( 18 ) , NCI-H2172 (pulmonary) ( 18 ) , NCI-H322 (pulmonary) ( 18 ) , NCI-H460 (pulmonary) ( 18 , 34 ) , NCI-H520 (squamous) ( 18 ) , NCI-H647 (pulmonary) ( 18 ) , NPC (neural crest) ( 16 ) , OCI-ly1 (B lymphocyte) ( 9 ) , OPM-2 (plasma cell) ( 17 ) , ovary ( 8 ) , P31/FUJ (erythroid) ( 17 ) , PC9 (pulmonary) ( 18 ) , Raji (B lymphocyte) ( 9 ) , RAMOS (B lymphocyte) ( 9 ) , RL ('B lymphocyte, precursor') ( 17 ) , RPMI-8266 (plasma cell) ( 17 ) , SH-SY5Y (neural crest) ( 10 ) , SU-DHL-4 (B lymphocyte) ( 9 ) , SU-DHL-6 (B lymphocyte) ( 17 ) , U-1810 (pulmonary) ( 23 ) , U266 (plasma cell) ( 17 ) , UPN-1 (B lymphocyte) ( 9 ) , WM239A (melanocyte) ( 6 )

Upstream Regulation
Treatments:
EGF ( 39 ) , LRRK2-IN-1 ( 10 ) , metastatic potential ( 27 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

5

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

6

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

7

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

10

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

11

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

12

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

13

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

14

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

15

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

16

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

17

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

18

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

19

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

20

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

21

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

22

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

23

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

24

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

25

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

26

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

27

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

28

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

29

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

30

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

31

Malik R, et al. (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8, 4553-63
19691289   Curated Info

32

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

33

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

34

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

35

Possemato A (2009) CST Curation Set: 6371; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

36

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

37

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

38

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

39

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info