|
Powered by Cell Signaling Technology |
Site Information |
---|
GtLKKSTsWHtALRL SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 4715630 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Treatments: |
Downstream Regulation | |
---|---|
Effects of modification on biological processes: |
References | |
---|---|
Fung TS, et al. (2022) Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 32, 1577-1592.e8
35290799 Curated Info |
|
Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325 Curated Info |
|
Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302 Curated Info |
|
Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004 Curated Info |
|
Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163 Curated Info |
|
Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229 Curated Info |
|
Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546 Curated Info |