Ser15
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser15  -  HSP27 (mouse)

Site Information
FsLLrsPsWEPFRDW   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448401

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 28 ) , [32P] ATP in vitro ( 28 ) , [32P] bio-synthetic labeling ( 24 ) , electrophoretic mobility shift ( 28 ) , mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 ) , mutation of modification site ( 24 ) , peptide sequencing ( 28 ) , phospho-antibody ( 23 , 24 , 25 ) , western blotting ( 23 , 24 , 25 )
Disease tissue studied:
anthrax infection ( 15 ) , melanoma skin cancer ( 20 ) , testicular cancer ( 17 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 7 ) , 'brain, cerebral cortex' ( 19 ) , 3T3 (fibroblast) [CDC42 (human), transfection] ( 5 ) , 3T3 (fibroblast) ( 5 ) , brain ( 11 , 16 ) , breast cell ( 28 ) , C2C12 (myoblast) ( 13 , 22 ) , ES-J1 (stem) ( 18 ) , F9 (testicular) ( 17 ) , heart ( 8 , 25 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 3 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 3 ) , HL-1 (myocyte) ( 3 ) , L929 (fibroblast) ( 24 ) , liver ( 2 , 6 , 10 , 21 ) , liver [leptin (mouse), homozygous knockout] ( 10 ) , MEF (fibroblast) ( 1 , 9 ) , MEF (fibroblast) [AMPKA1 (mouse), homozygous knockout] ( 1 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 9 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 9 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 14 ) , myocyte-heart ( 23 , 25 ) , PC-12 (chromaffin) [TrkA (rat), transfection] ( 12 ) , PC-12 (chromaffin) ( 12 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 20 ) , spleen ( 15 ) , stromal ( 4 )

Upstream Regulation
Regulatory protein:
ADRB1 (mouse) ( 8 ) , KRas (mouse) ( 5 ) , Raptor (mouse) ( 9 ) , RICTOR (mouse) ( 9 )
Putative in vivo kinases:
PKACA (mouse) ( 28 ) , PKCA (mouse) ( 28 ) , PKCD (mouse) ( 24 )
Kinases, in vitro:
MAPKAPK2 (human) ( 27 ) , MAPKAPK2 (mouse) ( 26 ) , PKACA (mouse) ( 28 ) , PKCA (mouse) ( 28 ) , PKCD (mouse) ( 24 )
Treatments:
H2O2 ( 24 ) , ischemia ( 4 ) , midazolam ( 23 ) , PD169316 ( 23 ) , PD98059 ( 25 ) , PDGF ( 12 , 25 ) , phorbol_ester ( 24 ) , rottlerin ( 24 ) , SB203580 ( 23 , 25 ) , SP600125 ( 25 ) , thrombin ( 23 )

Downstream Regulation
Effects of modification on HSP27:
activity, induced ( 24 ) , intracellular localization ( 24 )
Effects of modification on biological processes:
apoptosis, induced ( 24 )

References 

1

Zibrova D, et al. (2017) GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 474, 983-1001
28008135   Curated Info

2

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

3

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Gnad F, et al. (2013) Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Mol Cell Proteomics 12, 2070-80
23608596   Curated Info

6

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

9

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

10

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

11

Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316   Curated Info

12

Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198   Curated Info

13

Knight JD, et al. (2012) A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skelet Muscle 2, 5
22394512   Curated Info

14

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

15

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

16

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

17

Zhou J (2010) CST Curation Set: 9671; Year: 2010; Biosample/Treatment: cell line, F9/untreated; Disease: testicular cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

18

Zhou J (2010) CST Curation Set: 9670; Year: 2010; Biosample/Treatment: cell line, ES J1/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

19

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

20

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

21

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

22

Puente LG, Voisin S, Lee RE, Megeney LA (2006) Reconstructing the regulatory kinase pathways of myogenesis from phosphopeptide data. Mol Cell Proteomics 5, 2244-51
16971385   Curated Info

23

Tanabe K, et al. (2005) Midazolam suppresses thrombin-induced heat shock protein 27 phosphorylation through inhibition of p38 mitogen-activated protein kinase in cardiac myocytes. J Cell Biochem 96, 56-64
16052527   Curated Info

24

Lee YJ, et al. (2005) HSP25 inhibits protein kinase C delta-mediated cell death through direct interaction. J Biol Chem 280, 18108-19
15731106   Curated Info

25

Takenaka M, et al. (2004) Platelet-derived growth factor-BB phosphorylates heat shock protein 27 in cardiac myocytes. J Cell Biochem 91, 316-24
14743391   Curated Info

26

Rogalla T, et al. (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274, 18947-56
10383393   Curated Info

27

Stokoe D, et al. (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313, 307-13
1332886   Curated Info

28

Gaestel M, et al. (1991) Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem 266, 14721-4
1860870   Curated Info