Ser653
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser653  -  GYS1 (mouse)

Site Information
PsLsRHssPHQsEDE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448240

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 ) , phospho-antibody ( 13 , 14 , 15 ) , western blotting ( 13 , 14 , 15 )
Disease tissue studied:
leukemia ( 7 ) , acute myelogenous leukemia ( 7 ) , melanoma skin cancer ( 11 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 , 3 , 4 ) , 'fat, brown' ( 8 ) , 'muscle, skeletal' ( 13 , 15 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 10 ) , 32Dcl3 (myeloid) ( 10 ) , blood ( 7 ) , brain ( 9 ) , heart ( 5 , 8 ) , Hepa 1-6 (epithelial) ( 12 ) , kidney ( 8 ) , liver ( 6 ) , lung ( 8 ) , muscle ( 14 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 11 )

Upstream Regulation
Regulatory protein:
Akt2 (mouse) ( 13 )
Treatments:
dexamethasone ( 15 ) , exercise ( 15 ) , fasting ( 14 ) , insulin ( 4 , 14 , 15 ) , MK-2206 ( 4 ) , muscle contraction ( 13 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

3

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

4

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

5

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

6

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

7

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

8

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

9

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

10

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

11

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

12

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

13

Sakamoto K, et al. (2006) Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. Am J Physiol Endocrinol Metab 291, E1031-7
16803855   Curated Info

14

Jensen J, et al. (2006) Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290, E154-E162
16118249   Curated Info

15

Ruzzin J, Jensen J (2005) Contraction activates glucose uptake and glycogen synthase normally in muscles from dexamethasone-treated rats. Am J Physiol Endocrinol Metab 289, E241-50
15741240   Curated Info