Ser863
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser863  -  GluR1 (mouse)

Site Information
tstLPRNsGAGASGG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448566

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 29 ) , immunoprecipitation ( 12 , 13 ) , mutation of modification site ( 5 , 8 , 9 , 12 , 13 , 15 , 17 , 18 , 19 , 22 , 26 , 29 , 36 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 ) , phosphopeptide mapping ( 29 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 33 , 34 , 35 , 36 , 40 )
Disease tissue studied:
neuroblastoma ( 13 )
Relevant cell line - cell type - tissue:
'brain, amygdala' ( 4 , 14 ) , 'brain, cerebral cortex' ( 10 , 27 , 33 ) , 'brain, hippocampus' ( 1 , 2 , 5 , 7 , 8 , 12 , 14 , 16 , 19 , 22 , 23 , 24 , 29 , 31 , 35 , 36 ) , 'brain, hippocampus' [GluR1 (mouse), transgenic] ( 18 ) , 'brain, hippocampus, dentate gyrus' ( 23 ) , 'brain, neostriatum' ( 40 ) , 'brain, striatum' ( 9 , 14 , 20 , 27 , 30 , 32 , 39 ) , 'brain, visual cortex' ( 17 , 28 ) , 'neuron, cortical'-brain ( 21 ) , 'neuron, hippocampal' ( 13 ) , 'neuron, hippocampal, CA1 pyramidal'-brain ( 26 ) , 'neuron, neostriatal'-brain ( 38 ) , 293 (epithelial) ( 5 , 12 , 13 , 25 , 29 ) , brain [DARPP-32 (mouse), homozygous knockout] ( 34 ) , Neuro-2a (neuron) ( 13 ) , neuron-'brain, hippocampus' ( 2 , 3 , 6 , 11 , 23 , 39 ) , neuron-'brain, hippocampus' [GluR1 (mouse), genetic knockin] ( 15 ) , neuron:postsynaptic density-'brain, hippocampus, CA1 region' ( 4 ) , neuron:synaptosome-'brain, cerebral cortex' ( 39 ) , spinal cord ( 37 )

Upstream Regulation
Regulatory protein:
AKAP13 (human) ( 16 ) , ARPP-21 (mouse) ( 14 ) , calcyon (mouse) ( 34 ) , CDK5 (mouse) ( 9 ) , DARPP-32 (mouse) ( 40 ) , FMR1 (mouse) ( 21 ) , KCNT1 (human) ( 1 ) , neurabin 1 (mouse) ( 24 ) , VEZATIN (human) ( 2 )
Putative in vivo kinases:
PKACA (mouse) ( 2 , 8 , 12 )
Kinases, in vitro:
PKACA (human) ( 29 ) , PKACA (mouse) ( 12 )
Treatments:
APV ( 12 , 31 ) , baclofen ( 10 ) , BAPTA-AM ( 31 ) , beta-amyloid ( 3 ) , betaxolol ( 33 , 35 ) , bromocriptine ( 21 ) , caffeine ( 30 ) , calyculin_A ( 31 , 35 , 40 ) , cantharidin ( 12 ) , capsaicin ( 37 ) , CGS_21680 ( 30 ) , chronic unpredictable stress ( 4 ) , ciclosporin ( 12 , 31 , 35 , 40 ) , cLTD ( 1 ) , cLTP ( 3 ) , CNO ( 4 , 6 ) , cocaine ( 40 ) , CoCl2 ( 12 ) , colforsin ( 10 , 25 , 30 , 40 ) , cyclothiozide ( 31 ) , cypermethrin ( 35 ) , depolarization ( 12 ) , dihydrexidine ( 21 ) , dopamine ( 40 ) , EGTA ( 12 ) , eticlopride ( 32 ) , fearful stimulus ( 26 ) , fluoxetine ( 39 ) , glycine ( 13 ) , Go_6983 ( 11 ) , guanfacine ( 10 ) , H-89 ( 2 , 10 , 11 ) , haloperidol ( 20 , 32 , 33 ) , heparin sodium ( 21 ) , HS024 ( 6 ) , ICI-118,551 ( 33 , 35 ) , ifenprodil ( 31 ) , isoflurane ( 27 ) , isoproterenol ( 12 , 25 , 28 , 31 , 35 ) , ketamine ( 27 ) , KN-93 ( 26 ) , KT5720 ( 26 ) , KW6002 ( 32 ) , learning ( 8 ) , levamfetamine ( 33 , 34 ) , light ( 17 ) , long-term depression ( 5 , 19 ) , McN ( 28 ) , metamfetamine ( 40 ) , methylphenidate ( 33 ) , MK801 ( 33 , 34 ) , neurotensin ( 38 ) , NKH_477 ( 12 , 16 ) , NMDA ( 12 , 31 , 35 , 36 ) , NMDG ( 31 ) , norepinephrine ( 26 ) , okadaic_acid ( 11 , 40 ) , PACAP ( 11 ) , papaverine ( 20 ) , peptide inhibitor ( 21 , 23 ) , phentolamine ( 26 ) , phorbol_ester ( 25 ) , prazosin ( 33 ) , propofol ( 27 ) , propranolol ( 26 , 33 ) , quinpirole ( 21 , 32 , 40 ) , rolipram ( 20 , 35 ) , Rp-cAMPS ( 8 ) , SCH_23390 ( 21 , 32 , 33 , 34 , 40 ) , SKF81297 ( 21 , 40 ) , sulpiride ( 40 ) , t-ACPD ( 25 ) , thapsigargin ( 12 ) , TTX ( 35 ) , VEGF ( 3 ) , yohimbine ( 33 )

Downstream Regulation
Effects of modification on GluR1:
activity, induced ( 12 , 18 , 29 ) , intracellular localization ( 2 , 3 , 19 , 26 ) , phosphorylation ( 12 ) , protein stabilization ( 19 ) , receptor desensitization, altered ( 26 , 28 ) , receptor internalization, altered ( 36 ) , receptor recycling, altered ( 26 )
Effects of modification on biological processes:
neural plasticity ( 1 , 2 , 16 , 17 )

References 

1

Matt L, et al. (2021) The Na-activated K channel Slack contributes to synaptic development and plasticity. Cell Mol Life Sci
34664085   Curated Info

2

Wang Y, et al. (2021) Vezatin regulates seizures by controlling AMPAR-mediated synaptic activity. Cell Death Dis 12, 936
34642320   Curated Info

3

Martin L, et al. (2021) VEGF counteracts amyloid-β-induced synaptic dysfunction. Cell Rep 35, 109121
33979625   Curated Info

4

Ma H, et al. (2021) Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A 118
33526688   Curated Info

5

Goodell DJ, et al. (2017) DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep 19, 2231-2243
28614711   Curated Info

6

Shen Y, et al. (2016) Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model. Cell Rep 17, 1819-1831
27829153   Curated Info

7

Sanderson JL, Gorski JA, Dell'Acqua ML (2016) NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca(2+)-Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin. Neuron 89, 1000-15
26938443   Curated Info

8

Olivito L, et al. (2016) Phosphorylation of the AMPA receptor GluA1 subunit regulates memory load capacity. Brain Struct Funct 221, 591-603
25381005   Curated Info

9

Plattner F, et al. (2015) The role of ventral striatal cAMP signaling in stress-induced behaviors. Nat Neurosci 18, 1094-100
26192746   Curated Info

10

Lur G, Higley MJ (2015) Glutamate Receptor Modulation Is Restricted to Synaptic Microdomains. Cell Rep 12, 326-34
26146087   Curated Info

11

Toda AM, Huganir RL (2015) Regulation of AMPA receptor phosphorylation by the neuropeptide PACAP38. Proc Natl Acad Sci U S A 112, 6712-7
25964356   Curated Info

12

Gray EE, Guglietta R, Khakh BS, O'Dell TJ (2014) Inhibitory interactions between phosphorylation sites in the C terminus of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunits. J Biol Chem 289, 14600-11
24706758   Curated Info

13

Udagawa T, et al. (2012) Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell 47, 253-66
22727665   Curated Info

14

Davis MM, et al. (2012) Regulator of calmodulin signaling knockout mice display anxiety-like behavior and motivational deficits. Eur J Neurosci 35, 300-8
22250817   Curated Info

15

Kristensen AS, et al. (2011) Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci 14, 727-35
21516102   Curated Info

16

Kim M, et al. (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 7, e1002084
21738458   Curated Info

17

Goel A, et al. (2011) Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity. PLoS One 6, e18264
21483826   Curated Info

18

Lee HK, et al. (2010) Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J Neurophysiol 103, 479-89
19906877   Curated Info

19

He K, et al. (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci U S A 106, 20033-8
19892736   Curated Info

20

Nishi A, et al. (2008) Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 28, 10460-71
18923023   Curated Info

21

Wang H, et al. (2008) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59, 634-47
18760699   Curated Info

22

Crombag HS, et al. (2008) A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning. Behav Brain Res 191, 178-83
18455244   Curated Info

23

Du J, et al. (2008) The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci 28, 68-79
18171924   Curated Info

24

Wu LJ, et al. (2008) Neurabin contributes to hippocampal long-term potentiation and contextual fear memory. PLoS One 3, e1407
18183288   Curated Info

25

Delgado JY, et al. (2007) NMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840. J Neurosci 27, 13210-21
18045915   Curated Info

26

Hu H, et al. (2007) Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160-73
17923095   Curated Info

27

Snyder GL, Galdi S, Hendrick JP, Hemmings HC (2007) General anesthetics selectively modulate glutamatergic and dopaminergic signaling via site-specific phosphorylation in vivo. Neuropharmacology 53, 619-30
17826804   Curated Info

28

Seol GH, et al. (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919-29
17880895   Curated Info

29

Lee HK, et al. (2007) Identification and characterization of a novel phosphorylation site on the GluR1 subunit of AMPA receptors. Mol Cell Neurosci 36, 86-94
17689977   Curated Info

30

Sahin B, et al. (2007) Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling. Brain Res 1129, 1-14
17157277   Curated Info

31

Vanhoose AM, Clements JM, Winder DG (2006) Novel blockade of protein kinase A-mediated phosphorylation of AMPA receptors. J Neurosci 26, 1138-45
16436600   Curated Info

32

Håkansson K, et al. (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96, 482-8
16336634   Curated Info

33

Pascoli V, et al. (2005) cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortex in vivo: role of beta 1-adrenoceptors. Mol Pharmacol 68, 421-9
15890841   Curated Info

34

Valjent E, et al. (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci U S A 102, 491-6
15608059   Curated Info

35

Vanhoose AM, Winder DG (2003) NMDA and beta1-adrenergic receptors differentially signal phosphorylation of glutamate receptor type 1 in area CA1 of hippocampus. J Neurosci 23, 5827-34
12843287   Curated Info

36

Lee HK, et al. (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631-43
12628184   Curated Info

37

Fang L, et al. (2003) Increased phosphorylation of the GluR1 subunit of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor in rats following intradermal injection of capsaicin. Neuroscience 122, 237-45
14596864   Curated Info

38

Matsuyama S, et al. (2002) Neurotensin regulates DARPP-32 thr34 phosphorylation in neostriatal neurons by activation of dopamine D1-type receptors. J Neurochem 81, 325-34
12064480   Curated Info

39

Svenningsson P, et al. (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci U S A 99, 3182-7
11880651   Curated Info

40

Snyder GL, et al. (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20, 4480-8
10844017   Curated Info