Ser272
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser272  -  PXN (human)

Site Information
ELDELMAsLsDFkIQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 465466

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 3 , 6 , 7 , 8 , 10 , 11 ) , mutation of modification site ( 1 , 9 ) , phospho-antibody ( 2 , 4 ) , western blotting ( 2 , 4 , 9 )
Disease tissue studied:
breast cancer ( 4 , 6 ) , breast ductal carcinoma ( 6 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, triple negative ( 3 ) , leukemia ( 9 ) , acute myelogenous leukemia ( 9 ) , lung cancer ( 8 ) , non-small cell lung adenocarcinoma ( 8 ) , prostate cancer ( 2 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
FASN (human) ( 2 ) , PAK4 (human) ( 4 ) , RHOU (human) ( 4 )
Putative in vivo kinases:
PAK2 (human) ( 9 )
Treatments:
ischemia ( 6 ) , palmitate ( 2 ) , staurosporine ( 4 )

Downstream Regulation
Effects of modification on PXN:
molecular association, regulation ( 9 )
Effects of modification on biological processes:
cell adhesion, induced ( 2 ) , cytoskeletal reorganization ( 1 ) , transcription, inhibited ( 1 )
Induce interaction with:
TACE (human) ( 9 )

References 

1

Guadarrama Bello D, Fouillen A, Badia A, Nanci A (2020) Nanoporosity Stimulates Cell Spreading and Focal Adhesion Formation in Cells with Mutated Paxillin. ACS Appl Mater Interfaces
32155329   Curated Info

2

De Piano M, et al. (2020) Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene
32139877   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Dart AE, et al. (2015) PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol 211, 863-79
26598620   Curated Info

5

Hammer A, Oladimeji P, De Las Casas LE, Diakonova M (2015) Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover. FASEB J 29, 943-59
25466889   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

8

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

9

Lee JH, et al. (2013) HIV Nef, Paxillin, and Pak1/2 Regulate Activation and Secretion of TACE/ADAM10 Proteases. Mol Cell 49, 668-79
23317503   Curated Info

10

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

11

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info