Ser384
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser384  -  ELK1 (mouse)

Site Information
IHFWSTLsPIAPRsP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447872

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 14 ) , [32P] bio-synthetic labeling ( 14 ) , flow cytometry ( 2 ) , immunoassay ( 2 , 3 ) , mutation of modification site ( 1 , 4 , 9 , 12 , 14 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 ) , phosphopeptide mapping ( 14 ) , western blotting ( 1 , 2 , 5 , 6 , 7 , 8 , 9 , 12 , 13 )
Disease tissue studied:
leukemia ( 1 ) , acute myelogenous leukemia ( 1 )
Relevant cell line - cell type - tissue:
'B lymphocyte, precursor' ( 9 ) , 'brain, striatum' ( 12 ) , 293 (epithelial) ( 8 ) , 3T3 (fibroblast) ( 14 ) , 3T3-L1 (fibroblast) ( 7 , 10 ) , 661W ( 3 ) , aorta ( 1 ) , B lymphocyte ( 9 ) , heart ( 8 ) , LbetaT2 ( 6 ) , lymphocyte ( 2 ) , MEF (fibroblast) [ELK1 (mouse), homozygous knockout] ( 4 ) , MEF (fibroblast) ( 4 ) , myocyte-heart ( 8 ) , neuron-'brain, cerebral cortex' ( 5 ) , retina ( 3 ) , THP1 (myeloid) ( 1 )

Upstream Regulation
Regulatory protein:
DOK1 (mouse) ( 11 ) , ERK2 (rat) ( 8 ) , JNK1 (mouse) ( 6 ) , PPAR-alpha (mouse) ( 11 )
Putative in vivo kinases:
ERK1 (mouse) ( 10 , 12 ) , ERK2 (mouse) ( 10 , 12 ) , P38A (human) ( 1 )
Kinases, in vitro:
ERK1 (mouse) ( 14 ) , ERK2 (human) ( 4 ) , ERK2 (mouse) ( 7 )
Treatments:
antibody ( 9 ) , asprosin ( 1 ) , bicuculline ( 5 ) , bisindolylmaleimide ( 6 ) , EGF ( 14 ) , exoenzyme_C3 ( 13 ) , glutamic acid ( 12 ) , GnRH ( 6 ) , H-89 ( 6 ) , high-fat diet ( 3 ) , IL-18 ( 10 ) , KN-93 ( 6 ) , L-NAME ( 5 ) , miR-150 inhibitor ( 3 ) , miR-15a/miR-16 ( 2 ) , miRNA ( 3 ) , palmitate ( 3 ) , PD98059 ( 5 , 10 ) , peptide inhibitor ( 12 ) , phorbol_ester ( 4 , 6 ) , SB202190 ( 6 ) , SB203580 ( 1 ) , serum ( 14 ) , SP600125 ( 11 ) , TRIM ( 5 ) , U0126 ( 6 , 9 , 10 , 11 , 12 )

Downstream Regulation
Effects of modification on ELK1:
intracellular localization ( 1 , 3 , 12 ) , molecular association, regulation ( 4 )
Effects of modification on biological processes:
cell differentiation, altered ( 12 ) , cell growth, altered ( 9 ) , cell growth, induced ( 2 ) , cytoskeletal reorganization ( 12 ) , neural plasticity ( 5 ) , transcription, altered ( 14 ) , transcription, induced ( 1 , 4 , 9 , 12 )
Induce interaction with:
DNA ( 14 ) , MED16 (mouse) ( 4 ) , MED23 (mouse) ( 4 ) , Trap100 (mouse) ( 4 )

References 

1

Zou J, et al. (2022) Asprosin inhibits macrophage lipid accumulation and reduces atherosclerotic burden by up-regulating ABCA1 and ABCG1 expression via the p38/Elk-1 pathway. J Transl Med 20, 337
35902881   Curated Info

2

Urena F, et al. (2022) T-cell activation decreases miRNA-15a/16 levels to promote MEK1-ERK1/2-Elk1 signaling and proliferative capacity. J Biol Chem 298, 101634
35085550   Curated Info

3

Yu F, Ko ML, Ko GY (2021) MicroRNA-150 and its target ETS-domain transcription factor 1 contribute to inflammation in diabetic photoreceptors. J Cell Mol Med
34704358   Curated Info

4

Mylona A, et al. (2016) Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation. Science 354, 233-237
27738173   Curated Info

5

Gallo EF, Iadecola C (2011) Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J Neurosci 31, 6947-55
21562256   Curated Info

6

Ely HA, Mellon PL, Coss D (2011) GnRH induces the c-Fos gene via phosphorylation of SRF by the calcium/calmodulin kinase II pathway. Mol Endocrinol 25, 669-80
21292826   Curated Info

7

Carlson SM, et al. (2011) Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3. Sci Signal 4, rs11
22028470   Curated Info

8

Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2009) A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15, 75-83
19060905   Curated Info

9

Yasuda T, et al. (2008) Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28, 499-508
18356083   Curated Info

10

Chandrasekar B, et al. (2008) Interleukin-18 Suppresses Adiponectin Expression in 3T3-L1 Adipocytes via a Novel Signal Transduction Pathway Involving ERK1/2-dependent NFATc4 Phosphorylation. J Biol Chem 283, 4200-9
18086672   Curated Info

11

Hosooka T, et al. (2008) Dok1 mediates high-fat diet-induced adipocyte hypertrophy and obesity through modulation of PPAR-gamma phosphorylation. Nat Med 14, 188-93
18204460   Curated Info

12

Lavaur J, et al. (2007) A TAT-DEF-Elk-1 peptide regulates the cytonuclear trafficking of Elk-1 and controls cytoskeleton dynamics. J Neurosci 27, 14448-58
18160653   Curated Info

13

Ling L, Lobie PE (2004) RhoA/ROCK activation by growth hormone abrogates p300/histone deacetylase 6 repression of Stat5-mediated transcription. J Biol Chem 279, 32737-50
15102857   Curated Info

14

Gille H, et al. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14, 951-62
7889942   Curated Info