Ser63
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser63  -  STMN1 (mouse)

Site Information
AAEERRKsHEAEVLK   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448557

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 26 ) , mass spectrometry ( 2 , 4 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) , peptide sequencing ( 26 ) , phospho-antibody ( 1 ) , western blotting ( 1 )
Disease tissue studied:
leukemia ( 9 ) , acute myelogenous leukemia ( 9 ) , lung cancer ( 1 ) , non-small cell lung cancer ( 1 ) , non-small cell lung adenocarcinoma ( 1 ) , lymphoma ( 25 ) , B cell lymphoma ( 25 ) , melanoma skin cancer ( 16 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 , 7 ) , 'brain, embryonic' ( 23 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 15 ) , 32Dcl3 (myeloid) ( 15 ) , 3T3 (fibroblast) ( 18 ) , A549 (pulmonary) ( 1 ) , blood ( 9 ) , brain ( 11 , 13 , 22 , 24 ) , heart ( 8 , 20 , 21 ) , Hepa 1-6 (epithelial) ( 17 ) , liver ( 2 , 19 ) , lung ( 11 ) , macrophage-bone marrow ( 12 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 12 ) , NCI-H1299 (pulmonary) ( 1 ) , PYS-2 (epithelial) ( 14 ) , RAW 264.7 (macrophage) ( 5 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 16 ) , spleen ( 11 ) , T lymphocyte-spleen ( 10 ) , WEHI-231 (B lymphocyte) ( 25 )

Upstream Regulation
Kinases, in vitro:
PKACA (human) ( 26 )
Treatments:
colforsin ( 26 ) , insulin ( 7 ) , LPS ( 12 ) , LY294002 ( 7 ) , phorbol_ester ( 26 ) , taxol ( 1 ) , vinblastine ( 1 )

References 

1

Shen F, et al. (2017) Vinblastine differs from Taxol as it inhibits the malignant phenotypes of NSCLC cells by increasing the phosphorylation of Op18/stathmin. Oncol Rep 37, 2481-2489
28259950   Curated Info

2

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

3

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

4

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

5

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

9

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

10

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

11

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

12

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

13

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

14

Zhou J (2010) CST Curation Set: 9686; Year: 2010; Biosample/Treatment: cell line, PY2/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb Cat#: 9624, PTMScan(R) Phospho-PKA Substrate Motif (K/RK/RXS*/T*) Immunoaffinity Beads Cat#: 1984
Curated Info

15

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

16

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

17

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

18

Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105, 13793-8
18779572   Curated Info

19

Possemato A (2008) CST Curation Set: 3856; Year: 2008; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKA Substrate Antibody Cat#: 9621
Curated Info

20

Possemato A (2008) CST Curation Set: 3846; Year: 2008; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

21

Possemato A (2008) CST Curation Set: 3848; Year: 2008; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKA Substrate Antibody Cat#: 9621
Curated Info

22

Possemato A (2008) CST Curation Set: 3852; Year: 2008; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKA Substrate Antibody Cat#: 9621
Curated Info

23

Possemato A (2008) CST Curation Set: 3827; Year: 2008; Biosample/Treatment: tissue, brain, embryonic/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKA Substrate Antibody Cat#: 9621
Curated Info

24

Possemato A (2008) CST Curation Set: 3841; Year: 2008; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb Cat#: 9624, PTMScan(R) Phospho-PKA Substrate Motif (K/RK/RXS*/T*) Immunoaffinity Beads Cat#: 1984
Curated Info

25

Shu H, et al. (2004) Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line. Mol Cell Proteomics 3, 279-86
14729942   Curated Info

26

Beretta L, Dobránsky T, Sobel A (1993) Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2. J Biol Chem 268, 20076-84
8376365   Curated Info