Ser16
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser16  -  STMN1 (mouse)

Site Information
KELEKRAsGQAFELI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448554

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 46 ) , immunoassay ( 1 ) , immunoprecipitation ( 8 ) , mass spectrometry ( 2 , 3 , 5 , 6 , 7 , 9 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 29 , 30 , 31 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 44 ) , mass spectrometry (in vitro) ( 19 ) , mutation of modification site ( 26 ) , peptide sequencing ( 46 ) , phospho-antibody ( 1 , 8 , 26 , 32 , 43 , 45 ) , western blotting ( 1 , 8 , 26 , 32 , 43 )
Disease tissue studied:
anthrax infection ( 24 ) , leukemia ( 16 ) , acute myelogenous leukemia ( 16 ) , lymphoma ( 44 ) , B cell lymphoma ( 44 ) , melanoma skin cancer ( 37 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 6 , 12 ) , 'brain, cerebral cortex' ( 30 ) , 'brain, embryonic' ( 35 , 36 ) , 'fat, brown' ( 25 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 31 ) , 32Dcl3 (myeloid) ( 31 ) , 3T3 (fibroblast) ( 41 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 2 ) , blood ( 16 ) , brain ( 17 , 18 , 25 , 28 , 33 , 34 ) , C2C12 (myoblast) ( 19 , 39 , 40 ) , COS (fibroblast) ( 26 ) , GT1-7 (neuron) ( 43 ) , heart ( 13 , 25 ) , HeLa (cervical) ( 8 ) , Hepa 1-6 (epithelial) ( 38 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 9 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 9 ) , HL-1 (myocyte) ( 9 ) , kidney ( 25 ) , liver ( 11 , 25 , 42 ) , lung ( 25 ) , macrophage-bone marrow ( 27 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 27 ) , macrophage-peritoneum ( 15 ) , MC3T3-E1 (preosteoblast) ( 5 ) , MEF (fibroblast) ( 3 , 8 , 14 , 15 , 22 , 26 ) , MEF (fibroblast) [AMPKA1 (mouse), homozygous knockout] ( 3 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 21 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 14 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 14 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 22 ) , MLP-29 ( 32 ) , mpkCCD (renal) ( 29 ) , neuron-'brain, hippocampus' ( 1 ) , pancreas ( 25 ) , PD20 ( 8 ) , RAW 264.7 (macrophage) ( 7 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 37 ) , spleen ( 24 , 25 ) , T lymphocyte-spleen ( 23 ) , testis ( 25 ) , WEHI-231 (B lymphocyte) ( 44 )

Upstream Regulation
Regulatory protein:
ARHGEF7 (mouse) ( 1 ) , FANCC (human) ( 8 ) , MPRIP (mouse) ( 15 )
Putative in vivo kinases:
CAMK2A (mouse) ( 32 )
Kinases, in vitro:
PKACA (human) ( 46 )
Treatments:
AG1478 ( 43 ) , anti-prion ( 43 ) , colforsin ( 46 ) , epoxomicin ( 32 ) , insulin ( 12 ) , LCMV_gp33-41_peptide ( 23 ) , LPS ( 27 ) , MG132 ( 32 ) , NGF ( 46 ) , okadaic_acid ( 41 ) , phorbol_ester ( 46 ) , PTH(1-34) ( 5 ) , sorbitol ( 26 ) , U0126 ( 43 )

Downstream Regulation
Effects of modification on biological processes:
cell growth, induced ( 1 ) , cytoskeletal reorganization ( 1 )

References 

1

Kwon Y, et al. (2020) βPix-d promotes tubulin acetylation and neurite outgrowth through a PAK/Stathmin1 signaling pathway. PLoS One 15, e0230814
32251425   Curated Info

2

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

3

Zibrova D, et al. (2017) GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 474, 983-1001
28008135   Curated Info

4

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

5

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

6

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

7

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

8

Magron A, Elowe S, Carreau M (2015) The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation. PLoS One 10, e0140612
26466335   Curated Info

9

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

10

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

11

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

12

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

13

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

14

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

15

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

16

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

17

Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316   Curated Info

18

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

19

Knight JD, et al. (2012) A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skelet Muscle 2, 5
22394512   Curated Info

20

Garcia-Rudaz C, et al. (2011) Excessive ovarian production of nerve growth factor elicits granulosa cell apoptosis by setting in motion a tumor necrosis factor {alpha}/stathmin-mediated death signaling pathway. Reproduction 142, 319-31
21646391   Curated Info

21

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

22

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

23

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

24

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

25

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

26

Ng DC, et al. (2010) c-Jun N-terminal kinase phosphorylation of stathmin confers protection against cellular stress. J Biol Chem 285, 29001-13
20630875   Curated Info

27

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

28

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

29

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

30

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

31

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

32

Santamaría E, et al. (2009) Regulation of stathmin phosphorylation in mouse liver progenitor-29 cells during proteasome inhibition. Proteomics 9, 4495-506
19688729   Curated Info

33

Zhou J (2009) CST Curation Set: 7430; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

34

Zhou J (2009) CST Curation Set: 7431; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

35

Zhou J (2009) CST Curation Set: 7428; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

36

Zhou J (2009) CST Curation Set: 7429; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

37

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

38

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

39

Possemato A (2008) CST Curation Set: 5262; Year: 2008; Biosample/Treatment: cell line, C2C12/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

40

Possemato A (2008) CST Curation Set: 5257; Year: 2008; Biosample/Treatment: cell line, C2C12/serum starved; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

41

Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105, 13793-8
18779572   Curated Info

42

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

43

Monnet C, Gavard J, Mège RM, Sobel A (2004) Clustering of cellular prion protein induces ERK1/2 and stathmin phosphorylation in GT1-7 neuronal cells. FEBS Lett 576, 114-8
15474021   Curated Info

44

Shu H, et al. (2004) Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line. Mol Cell Proteomics 3, 279-86
14729942   Curated Info

45

Gavet O, et al. (1998) The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network. J Cell Sci 111 ( Pt 22), 3333-46
9788875   Curated Info

46

Beretta L, Dobránsky T, Sobel A (1993) Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2. J Biol Chem 268, 20076-84
8376365   Curated Info