|
Powered by Cell Signaling Technology |
Site Information |
---|
KQAEAVtsPRFIGRR SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 448544 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Regulatory protein: | |
Putative in vivo kinases: | |
Kinases, in vitro: | |
Putative upstream phosphatases: | |
Phosphatases, in vitro: | |
Treatments: |
Downstream Regulation | |
---|---|
Effects of modification on TH: |
References | |
---|---|
Hamdon S, et al. (2023) CHIR99021 causes inactivation of Tyrosine Hydroxylase and depletion of dopamine in rat brain striatum. Neuropharmacology 242, 109759
37844866 Curated Info |
|
González-Sepúlveda M, et al. (2022) Spontaneous changes in brain striatal dopamine synthesis and storage dynamics ex vivo reveal end-product feedback-inhibition of tyrosine hydroxylase. Neuropharmacology 212, 109058
35429504 Curated Info |
|
Ong LK, et al. (2021) Peripheral inflammation induces long-term changes in tyrosine hydroxylase activation in the substantia nigra. Neurochem Int 146, 105022
33746005 Curated Info |
|
Senthilkumaran M, Johnson ME, Bobrovskaya L (2016) The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland. Neurochem Res 41, 1612-24
26935743 Curated Info |
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198 Curated Info |
|
Zhang D, et al. (2007) Protein kinase C delta negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. J Neurosci 27, 5349-62
17507557 Curated Info |
|
Saraf A, Virshup DM, Strack S (2007) Differential expression of the B'beta regulatory subunit of protein phosphatase 2A modulates tyrosine hydroxylase phosphorylation and catecholamine synthesis. J Biol Chem 282, 573-80
17085438 Curated Info |
|
Lehmann IT, et al. (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281, 17644-51
16644734 Curated Info |
|
Royo M, Colette Daubner S (2006) Kinetics of regulatory serine variants of tyrosine hydroxylase with cyclic AMP-dependent protein kinase and extracellular signal-regulated protein kinase 2. Biochim Biophys Acta 1764, 786-92
16503426 Curated Info |
|
Royo M, Fitzpatrick PF, Daubner SC (2005) Mutation of regulatory serines of rat tyrosine hydroxylase to glutamate: effects on enzyme stability and activity. Arch Biochem Biophys 434, 266-74
15639226 Curated Info |
|
Ma FY, Grattan DR, Goffin V, Bunn SJ (2005) Prolactin-regulated tyrosine hydroxylase activity and messenger ribonucleic acid expression in mediobasal hypothalamic cultures: the differential role of specific protein kinases. Endocrinology 146, 93-102
15388649 Curated Info |
|
Moy LY, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279, 54487-93
15471880 Curated Info |
|
Kansy JW, et al. (2004) Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J Neurochem 91, 374-84
15447670 Curated Info |
|
Salvatore MF, et al. (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem 90, 245-54
15198683 Curated Info |
|
Ma FY, et al. (2004) Angiotensin II regulates tyrosine hydroxylase activity and mRNA expression in rat mediobasal hypothalamic cultures: the role of specific protein kinases. J Neurochem 90, 431-41
15228599 Curated Info |
|
Royo M, Daubner SC, Fitzpatrick PF (2004) Specificity of the MAP kinase ERK2 for phosphorylation of tyrosine hydroxylase. Arch Biochem Biophys 423, 247-52
15001389 Curated Info |
|
Jedynak JP, Ali SF, Haycock JW, Hope BT (2002) Acute administration of cocaine regulates the phosphorylation of serine-19, -31 and -40 in tyrosine hydroxylase. J Neurochem 82, 382-8
12124439 Curated Info |
|
Salvatore MF, Waymire JC, Haycock JW (2001) Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J Neurochem 79, 349-60
11677263 Curated Info |
|
Lindgren N, et al. (2001) Dopamine D(2) receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci 13, 773-80
11207812 Curated Info |
|
Lew JY, et al. (1999) Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity. Mol Pharmacol 55, 202-9
9927609 Curated Info |
|
Haycock JW, Ahn NG, Cobb MH, Krebs EG (1992) ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci U S A 89, 2365-9
1347949 Curated Info |
|
Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266, 5650-7
1672315 Curated Info |
|
Haycock JW (1990) Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem 265, 11682-91
1973163 Curated Info |