|
Powered by Cell Signaling Technology |
Site Information |
---|
KGFRRAVsEQDAKQA SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 448542 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Regulatory protein: | |
Kinases, in vitro: | |
Putative upstream phosphatases: | |
Phosphatases, in vitro: | |
Treatments: |
Downstream Regulation | |
---|---|
Effects of modification on TH: | |
Induce interaction with: |
References | |
---|---|
Hamdon S, et al. (2023) CHIR99021 causes inactivation of Tyrosine Hydroxylase and depletion of dopamine in rat brain striatum. Neuropharmacology 242, 109759
37844866 Curated Info |
|
Ong LK, et al. (2021) Peripheral inflammation induces long-term changes in tyrosine hydroxylase activation in the substantia nigra. Neurochem Int 146, 105022
33746005 Curated Info |
|
Senthilkumaran M, Johnson ME, Bobrovskaya L (2016) The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland. Neurochem Res 41, 1612-24
26935743 Curated Info |
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198 Curated Info |
|
Salvatore MF, Davis RW, Arnold JC, Chotibut T (2012) Transient striatal GLT-1 blockade increases EAAC1 expression, glutamate reuptake, and decreases tyrosine hydroxylase phosphorylation at ser(19). Exp Neurol 234, 428-36
22285253 Curated Info |
|
Coultrap SJ, et al. (2010) CaMKII autonomy is substrate-dependent and further stimulated by Ca2+/calmodulin. J Biol Chem 285, 17930-7
20353941 Curated Info |
|
Saraf A, Virshup DM, Strack S (2007) Differential expression of the B'beta regulatory subunit of protein phosphatase 2A modulates tyrosine hydroxylase phosphorylation and catecholamine synthesis. J Biol Chem 282, 573-80
17085438 Curated Info |
|
Kobori N, Moore AN, Dash PK (2006) GDNF abates serum deprivation-induced tyrosine hydroxylase Ser19 phosphorylation and activity. Brain Res 1086, 142-51
16626642 Curated Info |
|
Royo M, Fitzpatrick PF, Daubner SC (2005) Mutation of regulatory serines of rat tyrosine hydroxylase to glutamate: effects on enzyme stability and activity. Arch Biochem Biophys 434, 266-74
15639226 Curated Info |
|
Ma FY, Grattan DR, Goffin V, Bunn SJ (2005) Prolactin-regulated tyrosine hydroxylase activity and messenger ribonucleic acid expression in mediobasal hypothalamic cultures: the differential role of specific protein kinases. Endocrinology 146, 93-102
15388649 Curated Info |
|
Salvatore MF, et al. (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem 90, 245-54
15198683 Curated Info |
|
Ma FY, et al. (2004) Angiotensin II regulates tyrosine hydroxylase activity and mRNA expression in rat mediobasal hypothalamic cultures: the role of specific protein kinases. J Neurochem 90, 431-41
15228599 Curated Info |
|
Sachs NA, Vaillancourt RR (2004) Cyclin-dependent kinase 11p110 and casein kinase 2 (CK2) inhibit the interaction between tyrosine hydroxylase and 14-3-3. J Neurochem 88, 51-62
14675149 Curated Info |
|
Jedynak JP, Ali SF, Haycock JW, Hope BT (2002) Acute administration of cocaine regulates the phosphorylation of serine-19, -31 and -40 in tyrosine hydroxylase. J Neurochem 82, 382-8
12124439 Curated Info |
|
Bevilaqua LR, et al. (2001) Phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to increase the rate of phosphorylation of Ser(40). J Biol Chem 276, 40411-6
11502746 Curated Info |
|
Salvatore MF, Waymire JC, Haycock JW (2001) Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J Neurochem 79, 349-60
11677263 Curated Info |
|
Lindgren N, et al. (2001) Dopamine D(2) receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci 13, 773-80
11207812 Curated Info |
|
Lindgren N, et al. (2000) Regulation of tyrosine hydroxylase activity and phosphorylation at Ser(19) and Ser(40) via activation of glutamate NMDA receptors in rat striatum. J Neurochem 74, 2470-7
10820208 Curated Info |
|
Lew JY, et al. (1999) Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity. Mol Pharmacol 55, 202-9
9927609 Curated Info |
|
Haycock JW, et al. (1998) Role of serine-19 phosphorylation in regulating tyrosine hydroxylase studied with site- and phosphospecific antibodies and site-directed mutagenesis. J Neurochem 71, 1670-5
9751201 Curated Info |
|
Haycock JW, Ahn NG, Cobb MH, Krebs EG (1992) ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci U S A 89, 2365-9
1347949 Curated Info |
|
Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266, 5650-7
1672315 Curated Info |
|
Haycock JW (1990) Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem 265, 11682-91
1973163 Curated Info |
|
Campbell DG, Hardie DG, Vulliet PR (1986) Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J Biol Chem 261, 10489-92
2874140 Curated Info |