Thr53
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr53  -  ATF-2 (mouse)

Site Information
IVADQtPtPtRFLKN   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448225

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 35 ) , mass spectrometry ( 1 , 3 , 4 , 5 , 7 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 22 , 23 , 24 , 25 , 27 ) , mutation of modification site ( 33 ) , phospho-antibody ( 2 , 12 , 16 , 21 , 26 , 29 , 30 , 31 , 32 , 33 , 34 , 35 ) , western blotting ( 2 , 12 , 16 , 21 , 30 , 31 , 33 , 34 )
Disease tissue studied:
anthrax infection ( 15 ) , lymphoma ( 16 ) , T cell lymphoma ( 16 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 3 ) , 'brain, embryonic' ( 24 ) , 'kidney, inner medulla' ( 34 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 20 ) , 32Dcl3 (myeloid) ( 20 ) , 3T3 (fibroblast) [INSR (human)] ( 33 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 32 ) , 3T3-L1 (fibroblast) ( 30 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , brain ( 10 , 18 , 23 ) , fibroblast ( 33 ) , Hepa 1-6 (epithelial) ( 22 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 5 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 5 ) , HL-1 (myocyte) ( 5 ) , JB6 RT101 (epidermal) ( 31 ) , L929 (fibroblast) ( 35 ) , liver ( 7 , 25 , 27 ) , lung ( 29 ) , macrophage-bone marrow ( 17 , 26 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 17 ) , macrophage-peritoneum ( 9 ) , MEF (fibroblast) ( 8 , 12 , 30 , 33 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 13 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 8 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 8 ) , MEF (fibroblast) [TAK1 (mouse), homozygous knockout] ( 2 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 14 ) , mIMCD-3 (epithelial) ( 34 ) , mpkCCD (renal) ( 19 ) , PC-12 (chromaffin) [TrkA (rat), transfection] ( 11 ) , PC-12 (chromaffin) ( 11 ) , RAW 264.7 (macrophage) ( 4 ) , S49 (T lymphocyte) ( 16 ) , skin ( 29 ) , spleen ( 15 ) , T lymphocyte-lymph node ( 21 )

Upstream Regulation
Regulatory protein:
HRas (human) ( 33 ) , HRas (mouse) ( 12 ) , JNK1 (mouse) ( 33 ) , JNK2 (mouse) ( 12 , 33 ) , MKK6 (mouse) ( 28 ) , MPRIP (mouse) ( 9 ) , P38B (mouse) ( 31 ) , RALA (human) ( 33 ) , RICTOR (mouse) ( 8 ) , RLF (human) ( 33 ) , TAK1 (mouse) ( 2 ) , UCP2 (mouse) ( 26 )
Putative in vivo kinases:
ERK1 (mouse) ( 30 , 33 ) , ERK2 (mouse) ( 30 , 33 ) , JNK1 (mouse) ( 32 , 33 ) , JNK2 (human) ( 33 ) , P38A (mouse) ( 33 , 35 )
Kinases, in vitro:
ERK1 (mouse) ( 30 ) , ERK2 (mouse) ( 30 ) , P38A (human) ( 21 )
Treatments:
5-iodotubercidin ( 30 ) , anisomycin ( 28 ) , anti-CD3 ( 21 ) , cAMP_analog ( 16 ) , EGF ( 33 ) , IL-33 ( 4 ) , injury ( 29 ) , insulin ( 30 , 33 ) , LPS ( 17 , 26 ) , MMS ( 33 ) , nadolol ( 16 ) , norepinephrine ( 16 ) , osmotic_stress ( 30 , 33 , 34 ) , phorbol_ester ( 21 , 33 ) , PP1 ( 33 ) , SB202190 ( 29 , 34 ) , SB203580 ( 16 , 30 , 33 , 35 ) , serum ( 33 ) , SP600125 ( 30 ) , TNF ( 35 ) , U0126 ( 30 , 33 ) , UV ( 31 , 32 , 33 )

Downstream Regulation
Effects of modification on ATF-2:
protein stabilization ( 12 )
Effects of modification on biological processes:
carcinogenesis, induced ( 12 ) , cell growth, induced ( 12 ) , transcription, altered ( 35 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

2

Jia H, et al. (2015) p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene 34, 3568-81
25195859   Curated Info

3

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

4

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

5

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

8

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

9

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

10

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

11

Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198   Curated Info

12

Mathiasen DP, et al. (2012) Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation. Oncogene 31, 390-401
21706057   Curated Info

13

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

14

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

15

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

16

Lajevic MD, Suleiman S, Cohen RL, Chambers DA (2011) Activation of p38 mitogen-activated protein kinase by norepinephrine in T-lineage cells. Immunology 132, 197-208
21039464   Curated Info

17

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

18

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

19

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

20

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

21

Mittelstadt PR, Yamaguchi H, Appella E, Ashwell JD (2009) T cell receptor-mediated activation of p38{alpha} by mono-phosphorylation of the activation loop results in altered substrate specificity. J Biol Chem 284, 15469-74
19324872   Curated Info

22

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

23

Zhou J (2008) CST Curation Set: 4863; Year: 2008; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Phospho-Thr-Pro Motif Antibody (polyAB) Cat#: 3003, PTMScan(R) Phospho-Thr-Pro Motif (T*P) Immunoaffinity Beads Cat#: 1996
Curated Info

24

Zhou J (2008) CST Curation Set: 4864; Year: 2008; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Phospho-Thr-Pro Motif Antibody (polyAB) Cat#: 3003, PTMScan(R) Phospho-Thr-Pro Motif (T*P) Immunoaffinity Beads Cat#: 1996
Curated Info

25

Zhou J (2008) CST Curation Set: 4866; Year: 2008; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P Antibodies Used to Purify Peptides prior to LCMS: Phospho-Thr-Pro Motif Antibody (polyAB) Cat#: 3003, PTMScan(R) Phospho-Thr-Pro Motif (T*P) Immunoaffinity Beads Cat#: 1996
Curated Info

26

Emre Y, et al. (2007) Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J 402, 271-8
17073824   Curated Info

27

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

28

Frey MR, Dise RS, Edelblum KL, Polk DB (2006) p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. EMBO J 25, 5683-92
17139251   Curated Info

29

Ipaktchi K, et al. (2006) Attenuating burn wound inflammatory signaling reduces systemic inflammation and acute lung injury. J Immunol 177, 8065-71
17114480   Curated Info

30

Baan B, et al. (2006) The role of c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase in insulin-induced Thr69 and Thr71 phosphorylation of activating transcription factor 2. Mol Endocrinol 20, 1786-95
16601071   Curated Info

31

Lu C, et al. (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23, 121-32
16818236   Curated Info

32

Sabapathy K, et al. (2004) Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15, 713-25
15350216   Curated Info

33

Ouwens DM, et al. (2002) Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J 21, 3782-93
12110590   Curated Info

34

Dmitrieva NI, Bulavin DV, Fornace AJ, Burg MB (2002) Rapid activation of G2/M checkpoint after hypertonic stress in renal inner medullary epithelial (IME) cells is protective and requires p38 kinase. Proc Natl Acad Sci U S A 99, 184-9
11756692   Curated Info

35

Brinkman BM, et al. (1999) Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-dependent TNF-alpha gene expression. J Biol Chem 274, 30882-6
10521481   Curated Info