Ser108
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.8.0
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser108  -  AMPKB1 (human)

Site Information
skLPLTRsHNNFVAI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448522

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 2 ) , mass spectrometry ( 1 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 15 , 16 , 17 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 38 , 39 , 40 , 41 , 42 , 43 , 45 ) , mutation of modification site ( 18 , 44 ) , phospho-antibody ( 2 , 14 ) , western blotting ( 14 )
Disease tissue studied:
breast cancer ( 8 , 14 , 17 ) , breast adenocarcinoma ( 14 ) , breast ductal carcinoma ( 8 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 8 , 14 ) , cervical cancer ( 34 ) , cervical adenocarcinoma ( 34 ) , leukemia ( 21 ) , acute myelogenous leukemia ( 21 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 16 ) , acute megakaryoblastic leukemia (M7) ( 16 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 16 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 16 ) , acute myeloblastic leukemia, without maturation (M1) ( 16 ) , hepatocellular carcinoma, surrounding tissue ( 32 ) , lung cancer ( 17 , 27 ) , non-small cell lung cancer ( 17 ) , B cell lymphoma ( 16 ) , non-Hodgkin's lymphoma ( 16 ) , neuroblastoma ( 1 , 15 ) , ovarian cancer ( 8 ) , multiple myeloma ( 16 , 31 ) , prostate cancer ( 33 ) , melanoma skin cancer ( 6 ) , rhabdomyosarcoma ( 2 )
Relevant cell line - cell type - tissue:
293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 29 ) , 293 (epithelial) ( 18 , 44 ) , 293E (epithelial) ( 23 ) , A498 (renal) ( 30 ) , AML-193 (monocyte) ( 16 ) , AU565 (breast cell) ( 14 ) , B lymphocyte-blood ( 31 ) , breast ( 3 , 8 ) , BT-20 (breast cell) ( 17 ) , BT-549 (breast cell) ( 17 ) , Calu 6 (pulmonary) ( 17 ) , CL1-0 (pulmonary) ( 27 ) , CL1-1 (pulmonary) ( 27 ) , CL1-2 (pulmonary) ( 27 ) , CL1-5 (pulmonary) ( 27 ) , CMK (megakaryoblast) ( 16 ) , CTS (myeloid) ( 16 ) , DG75 (B lymphocyte) ( 28 ) , DOHH2 ('B lymphocyte, precursor') ( 16 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 19 ) , Flp-In T-Rex-293 (epithelial) ( 19 ) , H2009 (pulmonary) ( 17 ) , H2077 (pulmonary) ( 17 ) , H2887 (pulmonary) ( 17 ) , H322M (pulmonary) ( 17 ) , HCC1359 (pulmonary) ( 17 ) , HCC1937 (breast cell) ( 17 ) , HCC2279 (pulmonary) ( 17 ) , HCC366 (pulmonary) ( 17 ) , HCC4006 (pulmonary) ( 17 ) , HCC78 (pulmonary) ( 17 ) , HCC827 (pulmonary) ( 17 ) , HCT116 (intestinal) ( 36 ) , HEL (erythroid) ( 16 ) , HeLa (cervical) ( 7 , 13 , 26 , 35 , 39 , 42 ) , HeLa S3 (cervical) ( 34 , 41 ) , hepatocyte-liver ( 32 ) , HUES-9 ('stem, embryonic') ( 25 ) , Jurkat (T lymphocyte) ( 11 , 22 , 24 , 40 ) , K562 (erythroid) ( 13 , 35 ) , Kasumi-1 (myeloid) ( 16 ) , KG-1 (myeloid) ( 16 , 21 ) , KPL-4 (breast cell) ( 14 ) , LCLC-103H (pulmonary) ( 17 ) , liver ( 10 ) , LNCaP (prostate cell) ( 33 ) , LOU-NH91 (squamous) ( 17 ) , MCF-7 (breast cell) ( 5 , 14 , 17 ) , MDA-IBC-3 (breast cell) ( 14 ) , MDA-MB-231 (breast cell) ( 14 , 17 ) , MDA-MB-435S (breast cell) ( 36 ) , MDA-MB-468 (breast cell) ( 14 , 17 ) , MV4-11 (macrophage) ( 16 , 36 ) , NB10 (neural crest) ( 15 ) , NCI-H1299 (pulmonary) ( 45 ) , NCI-H1568 (pulmonary) ( 17 ) , NCI-H157 (pulmonary) ( 17 ) , NCI-H1648 (pulmonary) ( 17 ) , NCI-H1666 (pulmonary) ( 17 ) , NCI-H2172 (pulmonary) ( 17 ) , NCI-H460 (pulmonary) ( 17 ) , NCI-H520 (squamous) ( 17 ) , NCI-H647 (pulmonary) ( 17 ) , NPC (neural crest) ( 15 ) , OPM-2 (plasma cell) ( 16 ) , ovary ( 8 ) , P31/FUJ (erythroid) ( 16 ) , PC9 (pulmonary) ( 17 ) , platelet-blood ( 43 ) , Rh30 ('muscle, skeletal') ( 2 ) , RL ('B lymphocyte, precursor') ( 16 ) , RPMI-8266 (plasma cell) ( 16 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 9 ) , SH-SY5Y (neural crest) ( 9 ) , SK-N-BE(2) (neural crest) ( 1 ) , SKBr3 (breast cell) ( 14 ) , SU-DHL-6 (B lymphocyte) ( 16 ) , SUM149 (breast cell) ( 14 ) , SUM159 (breast cell) ( 14 ) , SUM190 (breast cell) ( 14 ) , U266 (plasma cell) ( 16 ) , WM115 (melanocyte) ( 38 ) , WM239A (melanocyte) ( 6 )

Upstream Regulation
Kinases, in vitro:
AMPKA1 (human) ( 37 )
Treatments:
angiotensin_2 ( 29 ) , antibody ( 40 ) , cannabidiol ( 1 ) , dasatinib ( 35 ) , EGF ( 35 ) , ionizing_radiation ( 45 ) , ischemia ( 8 ) , Lys05 ( 45 ) , metformin ( 5 ) , nocodazole ( 34 ) , SB202190 ( 35 ) , U0126 ( 35 )

Downstream Regulation
Effects of modification on AMPKB1:
activity, induced ( 44 ) , molecular association, regulation ( 18 ) , phosphorylation ( 44 )

References 

1

Guard SE, et al. (2022) Multi-Omic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics, 100262
35753663   Curated Info

2

Dasgupta A, et al. (2020) Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res
33168646   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Sacco F, et al. (2016) Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell Syst 2, 159-71
27135362   Curated Info

6

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

7

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

10

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

11

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

12

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

13

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

14

Robertson FM, et al. (2013) Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus 2, 497
24102046   Curated Info

15

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

16

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

17

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

18

Hawley SA, et al. (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918-22
22517326   Curated Info

19

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

20

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

21

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

22

Mulhern D (2011) CST Curation Set: 12711; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

23

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

24

Guo A (2011) CST Curation Set: 11984; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

25

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

26

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

27

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

28

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

29

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

30

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

31

Ge F, et al. (2010) Phosphoproteomic analysis of primary human multiple myeloma cells. J Proteomics 73, 1381-90
20230923   Curated Info

32

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

33

Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9, 174-8
20044836   Curated Info

34

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

35

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

36

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

37

Tuerk RD, et al. (2009) Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 390, 141-8
19376078   Curated Info

38

Old WM, et al. (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34, 115-31
19362540   Curated Info

39

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

40

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

41

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

42

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

43

Zahedi RP, et al. (2008) Phosphoproteome of resting human platelets. J Proteome Res 7, 526-34
18088087   Curated Info

44

Sanders MJ, et al. (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282, 32539-48
17728241   Curated Info

45

Ondrej M, et al. Lys05 - A Promising Autophagy Inhibitor in the Radiosensitization Battle: Phosphoproteomic Perspective. Cancer Genomics Proteomics
32576582   Curated Info