Ser9
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser9  -  SYN1 (rat)

Site Information
NYLRRRLsDSNFMAN   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448378

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 1 ) , mutation of modification site ( 1 , 4 ) , peptide sequencing ( 11 ) , phospho-antibody ( 1 , 2 , 3 , 6 , 7 , 8 , 9 ) , phosphopeptide mapping ( 11 ) , western blotting ( 1 , 2 , 3 , 6 , 7 , 8 , 9 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 3 , 6 ) , 'brain, hippocampus' ( 8 ) , 'brain, hippocampus, dentate gyrus' ( 8 ) , 'brain, hypothalamus' ( 7 ) , 'neuron, hippocampal, CA1 pyramidal' ( 1 ) , HEK293T (epithelial) ( 1 ) , neuron-'brain, hippocampus' ( 2 , 4 , 8 ) , SF9 ( 9 )

Upstream Regulation
Regulatory protein:
APP (human) ( 2 ) , HUNIN (human) ( 2 )
Kinases, in vitro:
CAMK1A (rat) ( 11 ) , PAK1 (rat) ( 9 ) , PKACA (rat) ( 9 , 10 , 11 )
Treatments:
beta-amyloid_42 ( 1 ) , bisphenol_A ( 5 ) , cocaine ( 3 ) , estradiol ( 7 ) , monocular_deprivation ( 6 ) , okadaic_acid ( 9 ) , peptide inhibitor ( 8 ) , Rp-cAMPS ( 3 ) , STO-609 ( 1 ) , U0126 ( 5 )

Downstream Regulation
Effects of modification on SYN1:
activity, induced ( 9 ) , intracellular localization ( 7 )
Effects of modification on biological processes:
neural plasticity ( 3 )

References 

1

Park D, et al. (2017) Activation of CaMKIV by soluble amyloid-β1-42 impedes trafficking of axonal vesicles and impairs activity-dependent synaptogenesis. Sci Signal 10
28698220   Curated Info

2

Chai GS, et al. (2014) Humanin attenuates Alzheimer-like cognitive deficits and pathological changes induced by amyloid β-peptide in rats. Neurosci Bull 30, 923-35
25391447   Curated Info

3

Sun WL, et al. (2014) Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict Biol 19, 77-86
23461423   Curated Info

4

Perlini LE, et al. (2011) Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 124, 3643-53
22045728   Curated Info

5

Iwakura T, et al. (2010) In vitro effects of bisphenol A on developing hypothalamic neurons. Toxicology 272, 52-8
20399245   Curated Info

6

Scott LL, Kogan D, Shamma AA, Quinlan EM (2010) Differential regulation of synapsin phosphorylation by monocular deprivation in juveniles and adults. Neuroscience 166, 539-50
20035839   Curated Info

7

Ohtani-Kaneko R, et al. (2010) Effects of estrogen on synapsin I distribution in developing hypothalamic neurons. Neurosci Res 66, 180-8
19896987   Curated Info

8

Du J, et al. (2008) The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci 28, 68-79
18171924   Curated Info

9

Tu Y, Nayak SK, Woodson J, Ross EM (2003) Phosphorylation-regulated inhibition of the Gz GTPase-activating protein activity of RGS proteins by synapsin I. J Biol Chem 278, 52273-81
14557263   Curated Info

10

Hosaka M, Hammer RE, Südhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24, 377-87
10571231   Curated Info

11

Czernik AJ, Pang DT, Greengard P (1987) Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci U S A 84, 7518-22
3118371   Curated Info