Ser87
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser87  -  Bcl-2 (human)

Site Information
AAAGPALsPVPPVVH   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448396

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 16 ) , [32P] bio-synthetic labeling ( 11 , 16 ) , electrophoretic mobility shift ( 14 , 16 ) , immunoprecipitation ( 4 ) , mass spectrometry ( 1 ) , mutation of modification site ( 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 ) , peptide sequencing ( 16 ) , phospho-antibody ( 2 , 4 , 6 , 8 , 15 ) , phosphoamino acid analysis ( 16 ) , western blotting ( 2 , 4 , 5 , 6 , 8 , 15 , 18 )
Disease tissue studied:
breast cancer ( 5 , 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, triple negative ( 1 ) , colorectal cancer ( 2 , 5 ) , colorectal carcinoma ( 2 , 5 ) , leukemia ( 7 , 9 , 17 ) , acute lymphocytic leukemia ( 17 ) , lung cancer ( 9 , 11 ) , non-small cell lung cancer ( 9 ) , small-cell lung cancer ( 11 ) , neuroblastoma ( 4 ) , prostate cancer ( 17 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
JNK1 (human) ( 6 ) , JNK3 (mouse) ( 18 ) , PXN (human) ( 2 ) , RAC1 (human) ( 18 )
Putative in vivo kinases:
ERK2 (human) ( 15 ) , JNK1 (human) ( 5 , 16 ) , P38A (human) ( 4 , 8 )
Kinases, in vitro:
ERK1 (human) ( 15 ) , ERK2 (human) ( 3 ) , JNK1 (human) ( 3 , 16 ) , JNK3 (mouse) ( 18 ) , P38A (human) ( 8 )
Treatments:
amino_acid_starvation ( 6 ) , C2-ceramide ( 5 ) , C2-DHCer ( 5 ) , cisplatin ( 9 ) , geldanamycin ( 17 ) , K252a ( 8 ) , nicotine ( 11 ) , PD98059 ( 15 ) , SB203580 ( 4 , 8 ) , selumetinib ( 2 ) , taxol ( 16 , 17 ) , TNF ( 15 ) , U0126 ( 2 ) , virus infection ( 4 )

Downstream Regulation
Effects of modification on Bcl-2:
activity, inhibited ( 16 ) , molecular association, regulation ( 3 , 5 , 6 , 9 ) , protein conformation ( 3 ) , protein stabilization ( 2 , 15 ) , ubiquitination ( 15 )
Effects of modification on biological processes:
apoptosis, altered ( 4 , 10 , 14 ) , apoptosis, induced ( 8 , 13 , 15 , 16 ) , apoptosis, inhibited ( 3 , 7 , 9 , 12 )
Induce interaction with:
BAX (mouse) ( 9 ) , PIN1 (human) ( 3 )
Inhibit interaction with:
beclin 1 (human) ( 5 , 6 ) , p53 (mouse) ( 9 )

Disease / Diagnostics Relevance
Relevant diseases:
colorectal cancer ( 2 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Huang CC, Wu DW, Lin PL, Lee H (2015) Paxillin promotes colorectal tumor invasion and poor patient outcomes via ERK-mediated stabilization of Bcl-2 protein by phosphorylation at Serine 87. Oncotarget 6, 8698-708
25826088   Curated Info

3

Kang C, et al. (2012) The natively disordered loop of Bcl-2 undergoes phosphorylation-dependent conformational change and interacts with Pin1. PLoS One 7, e52047
23272207   Curated Info

4

Nencioni L, et al. (2009) Bcl-2 Expression and p38MAPK Activity in Cells Infected with Influenza A Virus: IMPACT ON VIRALLY INDUCED APOPTOSIS AND VIRAL REPLICATION. J Biol Chem 284, 16004-15
19336399   Curated Info

5

Pattingre S, et al. (2009) Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 284, 2719-28
19029119   Curated Info

6

Wei Y, et al. (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30, 678-88
18570871   Curated Info

7

Konopleva M, et al. (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375-88
17097560   Curated Info

8

De Chiara G, et al. (2006) Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem 281, 21353-61
16714293   Curated Info

9

Deng X, et al. (2006) Bcl2's flexible loop domain regulates p53 binding and survival. Mol Cell Biol 26, 4421-34
16738310   Curated Info

10

Müller IM, et al. (2005) Cephalostatin 1 inactivates Bcl-2 by hyperphosphorylation independent of M-phase arrest and DNA damage. Mol Pharmacol 67, 1684-9
15703383   Curated Info

11

Mai H, et al. (2003) A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 278, 1886-91
12421819   Curated Info

12

Huang ST, Cidlowski JA (2002) Phosphorylation status modulates Bcl-2 function during glucocorticoid-induced apoptosis in T lymphocytes. FASEB J 16, 825-32
12039864   Curated Info

13

Torcia M, et al. (2001) Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem 276, 39027-36
11495898   Curated Info

14

Thomas A, Giesler T, White E (2000) p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene 19, 5259-69
11077443   Curated Info

15

Breitschopf K, et al. (2000) Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20, 1886-96
10669763   Curated Info

16

Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19, 8469-78
10567572   Curated Info

17

Basu A, Haldar S (1998) Microtubule-damaging drugs triggered bcl2 phosphorylation-requirement of phosphorylation on both serine-70 and serine-87 residues of bcl2 protein. Int J Oncol 13, 659-64
9735392   Curated Info

18

Maundrell K, et al. (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272, 25238-42
9312139   Curated Info