Ser157
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser157  -  VASP (human)

Site Information
EHIERRVsNAGGPPA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448379

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 29 , 38 ) , electrophoretic mobility shift ( 28 , 29 , 31 , 36 ) , immunoassay ( 12 ) , immunoprecipitation ( 5 , 6 , 7 , 12 , 13 , 18 ) , mass spectrometry ( 17 , 18 ) , microscopy-colocalization with upstream kinase ( 21 ) , mutation of modification site ( 4 , 9 , 12 , 14 , 16 , 18 , 23 , 24 , 30 , 31 , 33 , 36 ) , peptide sequencing ( 38 ) , phospho-antibody ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 15 , 16 , 19 , 20 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 31 , 32 , 33 , 34 , 35 ) , phosphoamino acid analysis ( 38 ) , phosphopeptide mapping ( 30 , 38 ) , western blotting ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 33 , 35 , 37 )
Disease tissue studied:
brain cancer ( 31 ) , glioma ( 31 ) , breast cancer ( 7 ) , breast adenocarcinoma ( 7 ) , breast cancer, triple negative ( 7 ) , gastric cancer ( 18 ) , gastric carcinoma ( 18 ) , liver cancer ( 14 ) , squamous cell carcinoma of the liver ( 14 ) , lung cancer ( 13 )
Relevant cell line - cell type - tissue:
'muscle, smooth' ( 9 ) , 'stem, mesenchymal' ( 8 ) , 293 (epithelial) ( 1 , 4 , 5 , 11 , 21 , 24 ) , A549 (pulmonary) ( 13 ) , A7r5 ('muscle, smooth') ( 31 ) , AGS (gastric) ( 18 ) , BAEC (endothelial) ( 20 , 22 ) , C6 (glial) ( 31 ) , E.coli (bacterial) ( 12 ) , EA.hy 926 (endothelial) ( 21 ) , ECV304 (endothelial) ( 24 ) , epithelial-'kidney, tubule' ( 23 ) , HeLa (cervical) ( 1 , 8 , 12 , 24 ) , HMEC (endothelial) ( 7 , 19 ) , HMVEC (endothelial) ( 33 ) , HPAEC (endothelial) ( 26 ) , HUVEC (endothelial) ( 20 , 24 ) , keratinocyte ( 23 ) , leukocyte-blood ( 17 ) , LX-2 (hepatic stellate) ( 14 ) , MDA-MB-231 (breast cell) ( 7 ) , MDA-MB-468 (breast cell) ( 7 ) , MDCKII (epithelial) ( 16 ) , mesangial ( 35 ) , MKN-28 (gastric) ( 18 ) , NMuMG (epithelial) ( 12 ) , platelet ( 2 , 3 ) , platelet-blood ( 6 , 10 , 11 , 15 , 19 , 23 , 25 , 27 , 28 , 29 , 32 , 34 , 35 , 36 , 37 , 38 ) , PtK2 (epithelial) ( 36 ) , T lymphocyte-blood ( 19 ) , T47D (breast cell) ( 7 ) , vascular smooth muscle cell ('muscle, smooth') ( 8 ) , vascular smooth muscle cell ('muscle, smooth') [VASP (mouse), homozygous knockout] ( 30 )

Upstream Regulation
Regulatory protein:
ANPA (human) ( 20 ) , PDE3A (human) ( 8 ) , PKACA (cow) ( 22 ) , PKG1 (human) ( 26 ) , RAC1 (human) ( 22 ) , RHOA (human) ( 12 )
Putative in vivo kinases:
PKACA (human) ( 21 ) , PKCA (human) ( 18 ) , PKG1 (human) ( 31 ) , PRKD1 (human) ( 12 ) , PRKD2 (human) ( 7 )
Kinases, in vitro:
PKACA (cow) ( 36 ) , PKACA (human) ( 1 , 21 , 38 ) , PKG1 (cow) ( 36 ) , PKG1 (human) ( 38 ) , PRKD1 (human) ( 12 )
Putative upstream phosphatases:
PTEN (human) ( 1 )
Phosphatases, in vitro:
PTEN (human) ( 1 )
Treatments:
5_6-DCl-cBIMPS ( 36 ) , 8-Rp-cAMP ( 11 ) , 8pCPT-cGMP ( 35 ) , ACh ( 9 ) , adenosine ( 33 ) , ADP ( 10 ) , AELE ( 3 ) , alprostadil ( 11 , 27 , 28 , 36 , 37 ) , ANP ( 20 , 35 ) , arachidonic_acid ( 3 ) , atenolol ( 22 ) , bacterial infection ( 18 ) , bisindolylmaleimide ( 8 , 9 , 28 ) , butoxamine ( 22 ) , caffeic_acid ( 3 ) , cAMP_analog ( 29 , 37 ) , carbon_monoxide ( 19 ) , CE-WIB801C ( 10 ) , cGMP_analog ( 26 , 28 , 31 , 32 , 35 , 36 , 37 ) , CID755673 ( 12 ) , colforsin ( 6 , 9 , 11 , 13 , 24 , 33 , 35 ) , collagen ( 2 , 25 ) , CRP ( 25 ) , DEA-NONOate ( 34 ) , dipyridamole ( 2 , 15 ) , epoprostenol ( 36 ) , glucose ( 19 ) , GNE 495 ( 2 ) , Go_6976 ( 25 ) , H-89 ( 8 , 25 , 32 , 33 , 35 ) , H1152 ( 28 ) , H2O2 ( 26 ) , KT5720 ( 32 ) , KT5823 ( 18 , 35 ) , LDL_oxidized ( 27 ) , linoleic_acid ( 34 ) , low_glucose ( 19 ) , microcystin-LR ( 5 ) , NECA ( 33 ) , nitric_oxide ( 15 , 19 , 23 , 29 ) , nitrolinoleate ( 34 ) , NKH_477 ( 8 , 37 ) , ODQ ( 15 ) , okadaic_acid ( 6 ) , PF 06260933 ( 2 ) , phorbol_ester ( 8 , 28 ) , PKI-(14-22)amide ( 32 ) , PP2 ( 22 ) , racepinefrine ( 9 , 22 ) , RGD ( 37 ) , rottlerin ( 18 , 25 ) , Rp-cAMPS ( 15 , 32 ) , Rp-cGMP ( 29 , 32 ) , rutin ( 3 ) , siRNA ( 12 ) , SNP ( 15 , 35 , 36 , 37 ) , SR59230A ( 22 ) , thrombin ( 28 ) , U0126 ( 22 ) , virus infection ( 16 ) , wortmannin ( 22 , 28 ) , Y27632 ( 28 )

Downstream Regulation
Effects of modification on VASP:
activity, induced ( 33 ) , intracellular localization ( 9 , 12 , 21 , 33 ) , molecular association, regulation ( 6 , 9 ) , protein conformation ( 2 )
Effects of modification on biological processes:
carcinogenesis, induced ( 1 ) , cell adhesion, altered ( 21 ) , cell growth, altered ( 8 , 30 ) , cell motility, induced ( 1 ) , cell motility, inhibited ( 7 , 12 ) , cytoskeletal reorganization ( 12 , 16 , 18 , 21 ) , transcription, inhibited ( 31 )
Induce interaction with:
VASP (human) ( 9 ) , Vinculin (human) ( 9 )
Inhibit interaction with:
CRKL (human) ( 6 ) , SPTAN1 (human) ( 21 )

References 

1

Zhang Q, et al. (2021) PTENε suppresses tumor metastasis through regulation of filopodia formation. EMBO J, e105806
33755220   Curated Info

2

Nam GS, et al. (2021) A new function for MAP4K4 inhibitors during platelet aggregation and platelet-mediated clot retraction. Biochem Pharmacol 188, 114519
33737052   Curated Info

3

Lescano CH, et al. (2021) Rutin present in Alibertia edulis extract acts on human platelet aggregation through inhibition of cyclooxygenase/thromboxane. Food Funct 12, 802-814
33393955   Curated Info

4

Gau D, Veon W, Shroff SG, Roy P (2019) The VASP-profilin1 (Pfn1) interaction is critical for efficient cell migration and is regulated by cell-substrate adhesion in a PKA-dependent manner. J Biol Chem
30814249   Curated Info

5

Huang P, et al. (2017) HEK293 cells exposed to microcystin-LR show reduced protein phosphatase 2A activity and more stable cytoskeletal structure when overexpressing α4 protein. Environ Toxicol 32, 255-264
26784437   Curated Info

6

Benz PM, et al. (2016) Vasodilator-Stimulated Phosphoprotein (VASP)-dependent and -independent pathways regulate thrombin-induced activation of Rap1b in platelets. Cell Commun Signal 14, 21
27620165   Curated Info

7

Döppler H, et al. (2015) The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma. Oncotarget 6, 29740-52
26336132   Curated Info

8

Maass PG, et al. (2015) PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet 47, 647-53
25961942   Curated Info

9

Wu Y, Gunst SJ (2015) Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism. J Biol Chem 290, 11403-16
25759389   Curated Info

10

Lee DH, et al. (2015) Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP. Arch Pharm Res 38, 81-97
25001901   Curated Info

11

Subramanian H, et al. (2013) Phosphorylation of CalDAG-GEFI by protein kinase A prevents Rap1b activation. J Thromb Haemost 11, 1574-82
23611601   Curated Info

12

Döppler HR, et al. (2013) Protein kinase D1-mediated phosphorylations regulate vasodilator-stimulated phosphoprotein (VASP) localization and cell migration. J Biol Chem 288, 24382-93
23846685   Curated Info

13

Lara R, et al. (2011) An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis. Oncogene 30, 3513-21
21423205   Curated Info

14

Routray C, et al. (2011) Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. Am J Physiol Cell Physiol 301, C66-74
21451103   Curated Info

15

Jensen BO, et al. (2011) Dipyridamole synergizes with nitric oxide to prolong inhibition of thrombin-induced platelet shape change. Platelets 22, 7-18
20958117   Curated Info

16

Jaeger V, et al. (2010) Herpes simplex virus type 1 entry into epithelial MDCKII cells: role of VASP activities. J Gen Virol 91, 2152-7
20463151   Curated Info

17

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

18

Knauer O, et al. (2008) Differential phosphoproteome profiling reveals a functional role for VASP in Helicobacter pylori-induced cytoskeleton turnover in gastric epithelial cells. Cell Microbiol 10, 2285-96
18637808   Curated Info

19

Li Calzi S, et al. (2008) Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein phosphorylation: evidence for blunted responsiveness in diabetes. Diabetes 57, 2488-94
18559661   Curated Info

20

Chen H, et al. (2008) Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem 283, 4439-47
18079117   Curated Info

21

Benz PM, et al. (2008) Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol 180, 205-19
18195108   Curated Info

22

Kou R, Michel T (2007) Epinephrine regulation of the endothelial nitric-oxide synthase: roles of RAC1 and beta3-adrenergic receptors in endothelial NO signaling. J Biol Chem 282, 32719-29
17855349   Curated Info

23

Lindsay SL, et al. (2007) Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 120, 3011-21
17684063   Curated Info

24

Blume C, et al. (2007) AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 282, 4601-12
17082196   Curated Info

25

Pula G, et al. (2006) PKCdelta regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood 108, 4035-44
16940418   Curated Info

26

Moldobaeva A, et al. (2006) Role of protein kinase G in barrier-protective effects of cGMP in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 290, L919-30
16339778   Curated Info

27

Chou DS, et al. (2006) Inhibitory mechanisms of low concentrations of oxidized low-density lipoprotein on platelet aggregation. J Biomed Sci 13, 333-43
16283430   Curated Info

28

Wentworth JK, Pula G, Poole AW (2006) Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets. Biochem J 393, 555-64
16197368   Curated Info

29

Jensen BO, et al. (2004) Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide. Blood 104, 2775-82
15265792   Curated Info

30

Chen L, et al. (2004) Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24, 1403-8
15178555   Curated Info

31

Zhuang S, et al. (2004) Vasodilator-stimulated phosphoprotein activation of serum-response element-dependent transcription occurs downstream of RhoA and is inhibited by cGMP-dependent protein kinase phosphorylation. J Biol Chem 279, 10397-407
14679200   Curated Info

32

Li Z, Ajdic J, Eigenthaler M, Du X (2003) A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans. Blood 101, 4423-9
12576312   Curated Info

33

Comerford KM, et al. (2002) Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J 16, 583-5
11919161   Curated Info

34

Coles B, et al. (2002) Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem 277, 5832-40
11748216   Curated Info

35

Burkhardt M, et al. (2000) KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 275, 33536-41
10922374   Curated Info

36

Smolenski A, et al. (1998) Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 273, 20029-35
9685341   Curated Info

37

Horstrup K, et al. (1994) Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 225, 21-7
7925440   Curated Info

38

Butt E, et al. (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269, 14509-17
8182057   Curated Info