Thr383
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr383  -  PTEN (human)

Site Information
HyRYsDttDsDPENE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448315

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 13 , 16 , 17 ) , immunoprecipitation ( 1 , 3 , 6 ) , mutation of modification site ( 1 , 4 , 5 , 6 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ) , peptide sequencing ( 2 ) , phospho-antibody ( 3 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 14 , 15 ) , phosphoamino acid analysis ( 17 ) , phosphopeptide mapping ( 10 ) , western blotting ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 14 )
Disease tissue studied:
breast cancer ( 8 , 14 ) , cervical cancer ( 8 ) , cervical adenocarcinoma ( 8 ) , colorectal cancer ( 2 ) , colorectal carcinoma ( 2 ) , gastric cancer ( 3 ) , gastric carcinoma ( 3 ) , neuroblastoma ( 7 ) , ovarian cancer ( 9 ) , ovarian epithelial carcinoma ( 9 ) , prostate cancer ( 5 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
Notch 1 (human) ( 3 ) , PINK1 (human) ( 7 ) , PKCZ (human) ( 8 ) , PTEN (human) ( 14 ) , Src (human) ( 14 )
Putative in vivo kinases:
LKB1 (human) ( 8 )
Kinases, in vitro:
CK2A1 (human) ( 16 ) , LKB1 (human) ( 8 ) , PKCZ (human) ( 8 ) , PLK1 (human) ( 4 )
Putative upstream phosphatases:
INPP4B (human) ( 2 ) , PTEN (human) ( 6 )
Phosphatases, in vitro:
PTEN (human) ( 6 )
Treatments:
cathepsin_G ( 12 ) , EF24 ( 9 ) , EGF ( 7 ) , gamma-secretase_inhibitor ( 3 ) , ONOO(-) ( 8 ) , PKC-zeta_inhibitor ( 8 ) , Sin-1 ( 8 ) , siRNA ( 8 ) , taxol ( 3 )

Downstream Regulation
Effects of modification on PTEN:
enzymatic activity, inhibited ( 10 , 17 ) , intracellular localization ( 3 ) , molecular association, regulation ( 13 , 15 ) , protein conformation ( 5 ) , protein stabilization ( 15 , 16 , 17 )
Effects of modification on biological processes:
cell cycle regulation ( 3 ) , cell differentiation, altered ( 11 ) , cell motility, altered ( 11 , 13 ) , neural plasticity ( 6 ) , transcription, altered ( 17 )
Induce interaction with:
PTEN (human) ( 13 )
Inhibit interaction with:
AIP1 (human) ( 15 ) , PTEN (human) ( 10 )

References 

1

Yang JM, et al. (2017) Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene 36, 3673-3685
28263967   Curated Info

2

Guo ST, et al. (2016) INPP4B is an oncogenic regulator in human colon cancer. Oncogene 35, 3049-61
26411369   Curated Info

3

Kim SJ, et al. (2016) Activation of nuclear PTEN by inhibition of Notch signaling induces G2/M cell cycle arrest in gastric cancer. Oncogene 35, 251-60
25823029   Curated Info

4

Choi BH, Pagano M, Dai W (2014) Plk1 Protein Phosphorylates Phosphatase and Tensin Homolog (PTEN) and Regulates Its Mitotic Activity during the Cell Cycle. J Biol Chem 289, 14066-74
24706748   Curated Info

5

Papa A, et al. (2014) Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function. Cell 157, 595-610
24766807   Curated Info

6

Zhang XC, et al. (2012) Functional analysis of the protein phosphatase activity of PTEN. Biochem J 444, 457-64
22413754   Curated Info

7

Murata H, et al. (2011) A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 286, 7182-9
21177249   Curated Info

8

Song P, et al. (2008) Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem 283, 12446-55
18321849   Curated Info

9

Selvendiran K, et al. (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282, 28609-18
17684018   Curated Info

10

Odriozola L, Singh G, Hoang T, Chan AM (2007) Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem 282, 23306-15
17565999   Curated Info

11

Leslie NR, Yang X, Downes CP, Weijer CJ (2007) PtdIns(3,4,5)P(3)-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol 17, 115-25
17240336   Curated Info

12

Rafiq K, et al. (2006) Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J Biol Chem 281, 19781-92
16690621   Curated Info

13

Raftopoulou M, et al. (2004) Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303, 1179-81
14976311   Curated Info

14

Lu Y, et al. (2003) Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem 278, 40057-66
12869565   Curated Info

15

Tolkacheva T, et al. (2001) Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res 61, 4985-9
11431330   Curated Info

16

Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276, 993-8
11035045   Curated Info

17

Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20, 5010-8
10866658   Curated Info