Ser36
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser36  -  IkB-alpha (human)

Site Information
RHDsGLDsMkDEEyE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448204

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 67 ) , [32P] bio-synthetic labeling ( 36 , 38 , 62 , 67 ) , electrophoretic mobility shift ( 46 , 62 ) , immunoprecipitation ( 1 ) , mass spectrometry ( 3 , 5 , 6 , 16 , 17 , 18 , 19 , 20 ) , mutation of modification site ( 2 , 21 , 30 , 36 , 38 , 39 , 40 , 42 , 44 , 45 , 47 , 48 , 51 , 52 , 53 , 54 , 62 , 65 , 66 , 67 ) , peptide sequencing ( 13 ) , phospho-antibody ( 1 , 2 , 4 , 8 , 9 , 11 , 14 , 21 , 22 , 23 , 24 , 27 , 28 , 29 , 30 , 31 , 33 , 34 , 35 , 36 , 37 , 38 , 40 , 41 , 42 , 43 , 44 , 46 , 47 ) , phosphopeptide mapping ( 62 ) , western blotting ( 1 , 2 , 4 , 8 , 9 , 11 , 13 , 14 , 21 , 22 , 23 , 24 , 27 , 28 , 29 , 30 , 31 , 33 , 34 , 38 , 40 , 42 , 43 , 47 , 52 , 65 , 66 )
Disease tissue studied:
bone cancer ( 8 ) , brain cancer ( 11 ) , glioblastoma ( 11 ) , glioma ( 11 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 ) , cervical cancer ( 14 ) , cervical squamous cell carcinoma ( 14 ) , colorectal cancer ( 8 , 30 , 40 ) , colorectal carcinoma ( 8 , 30 , 40 ) , gastric cancer ( 20 ) , gastric carcinoma ( 20 ) , liver cancer ( 13 ) , lung cancer ( 1 , 16 , 17 , 18 , 19 , 23 ) , non-small cell lung cancer ( 1 , 16 , 17 , 18 , 19 , 23 ) , lymphoma ( 51 ) , T cell lymphoma ( 51 ) , ovarian cancer ( 47 )
Relevant cell line - cell type - tissue:
267B1 (epithelial) ( 44 ) , 293 (epithelial) ( 21 , 34 , 40 ) , 293 (epithelial) [IRAK1 (human)] ( 34 ) , 293T (epithelial) ( 1 , 39 , 55 ) , 3T3 (fibroblast) ( 52 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 62 ) , A549 (pulmonary) ( 23 ) , BAEC (endothelial) ( 24 , 43 ) , breast ( 3 ) , Caco-2 (intestinal) ( 30 ) , CEM (T lymphocyte) ( 31 ) , cervix ( 41 ) , EL-4 (T lymphocyte) ( 51 ) , EL-4 (T lymphocyte) [IkB-alpha (human)] ( 67 ) , endothelial ( 24 ) , HCT116 (intestinal) ( 8 ) , HeLa (cervical) ( 8 , 9 , 21 , 42 , 53 , 55 , 62 , 65 ) , HepG2 (hepatic) ( 13 ) , HT-29 (intestinal) ( 40 ) , hTERT-HME1 ( 4 ) , HUVEC (endothelial) ( 22 , 37 ) , JB (epithelial) ( 35 ) , JPM50.6 (T lymphocyte) ( 29 ) , Jurkat (T lymphocyte) ( 6 , 27 , 29 , 31 , 33 , 38 , 53 , 66 ) , KB (squamous) ( 14 ) , LN229 (glial) ( 36 ) , lung ( 16 , 17 , 18 , 19 ) , M059J (glial) ( 11 ) , M059K (glial) ( 11 ) , MEF (fibroblast) ( 24 ) , microglia ( 45 ) , MKN-45 (gastric) ( 20 ) , monocyte ( 46 ) , NCI-H1299 (pulmonary) ( 1 , 23 ) , NCI-H1703 (squamous) ( 5 ) , NCM460 (epithelial) ( 28 ) , OV2008 (ovarian) ( 47 ) , PC CL 3 (thyroid cell) [TR-beta1 (human), transfection] ( 2 ) , SH-SY5Y (neural crest) ( 36 ) , T84 (intestinal) ( 30 ) , U-937 (myeloid) ( 54 ) , U2OS (bone cell) ( 8 ) , U737 (glial) ( 36 )

Upstream Regulation
Regulatory protein:
CARD11 (human) ( 27 ) , EGFR (human) ( 4 ) , IKKG (human) ( 13 ) , LMP1 (herpesvirus) ( 34 ) , PLK1 (human) ( 21 ) , PRKD2 (human) ( 28 ) , SHIP (human) ( 31 ) , TR-beta1 (human) ( 2 )
Putative in vivo kinases:
ERK7 (human) ( 1 ) , IKKB (human) ( 53 ) , IKKE (human) ( 53 )
Kinases, in vitro:
CK2A1 (human) ( 54 ) , ERK7 (human) ( 1 ) , IKKA (human) ( 47 , 50 , 56 , 59 , 60 ) , IKKB (human) ( 26 , 50 , 59 ) , Nik (human) ( 57 )
Treatments:
15d-PGJ2 ( 22 ) , actinomycin_D ( 29 ) , anti-CD28 ( 38 ) , anti-CD3 ( 38 ) , anti-CD3/CD28 ( 29 ) , anti-LT(beta)R ( 40 ) , bacterial infection ( 30 ) , betulinic_acid ( 36 ) , bisindolylmaleimide ( 38 ) , cycloheximide ( 29 ) , deferoxamine ( 24 ) , EGCG ( 46 ) , EGF ( 25 ) , FeTPPS ( 46 ) , gomisin_A ( 9 ) , gomisin_N ( 9 ) , H2O2 ( 31 ) , hypoxia ( 12 ) , hypoxia/reoxygenation ( 42 ) , IL-1a ( 62 ) , IL-1b ( 14 , 30 ) , ionizing_radiation ( 13 ) , ionomycin ( 27 , 33 , 51 ) , LLnL ( 25 ) , LPA ( 28 ) , LPS ( 4 ) , MG132 ( 14 , 29 , 38 ) , NAC ( 43 ) , nocodazole ( 21 ) , okadaic_acid ( 65 ) , ONOO(-) ( 46 ) , parthenolide ( 38 ) , phorbol_ester ( 27 , 33 , 51 , 53 , 54 , 62 , 65 ) , pomegranate_wine ( 43 ) , seliciclib ( 23 ) , siRNA ( 28 ) , taxol ( 47 ) , thrombin ( 37 ) , TNF ( 9 , 11 , 23 , 24 , 25 , 31 , 34 , 35 , 36 , 40 , 42 , 43 , 53 , 54 , 62 , 65 ) , U0126 ( 35 ) , UV ( 42 ) , vanadate ( 14 , 31 , 42 )

Downstream Regulation
Effects of modification on IkB-alpha:
activity, induced ( 48 , 51 ) , intracellular localization ( 1 , 41 ) , phosphorylation ( 40 ) , protein degradation ( 1 , 32 , 35 , 36 , 37 , 39 , 44 , 47 , 51 , 60 , 62 , 65 , 66 , 67 )
Effects of modification on biological processes:
apoptosis, altered ( 36 ) , apoptosis, induced ( 47 ) , apoptosis, inhibited ( 42 , 48 ) , transcription, altered ( 39 , 40 , 45 , 48 , 51 ) , transcription, induced ( 32 , 42 , 65 , 66 )

References 

1

Wu DD, et al. (2017) Extracellular signal-regulated kinase 8-mediated NF-κB activation increases sensitivity of human lung cancer cells to arsenic trioxide. Oncotarget 8, 49144-49155
28467781   Curated Info

2

Park JW, Zhao L, Willingham MC, Cheng SY (2017) Loss of tyrosine phosphorylation at Y406 abrogates the tumor suppressor functions of the thyroid hormone receptor β. Mol Carcinog 56, 489-498
27254276   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

De S, et al. (2015) Erlotinib protects against LPS-induced Endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci U S A 112, 9680-5
26195767   Curated Info

5

Stokes MP, et al. (2012) PTMScan Direct: Identification and Quantification of Peptides from Critical Signaling Proteins by Immunoaffinity Enrichment Coupled with LC-MS/MS. Mol Cell Proteomics 11, 187-201
22322096   Curated Info

6

Mulhern D (2012) CST Curation Set: 13112; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

7

Dai Y, et al. (2011) Disruption of IkappaB kinase (IKK)-mediated RelA serine 536 phosphorylation sensitizes human multiple myeloma cells to histone deacetylase (HDAC) inhibitors. J Biol Chem 286, 34036-50
21816815   Curated Info

8

Malik SA, et al. (2011) BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918-29
21460857   Curated Info

9

Waiwut P, et al. (2011) Gomisin N enhances TNF-α-induced apoptosis via inhibition of the NF-κB and EGFR survival pathways. Mol Cell Biochem 350, 169-75
21188622   Curated Info

10

Diel DG, et al. (2011) Orf virus ORFV121 encodes a novel inhibitor of NF-kappaB that contributes to virus virulence. J Virol 85, 2037-49
21177808   Curated Info

11

Ju J, et al. (2010) Phosphorylation of p50 NF-kappaB at a single serine residue by DNA-dependent protein kinase is critical for VCAM-1 expression upon TNF treatment. J Biol Chem 285, 41152-60
20966071   Curated Info

12

Culver C, et al. (2010) Mechanism of Hypoxia-Induced NF-{kappa}B. Mol Cell Biol 30, 4901-21
20696840   Curated Info

13

Hinz M, et al. (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol Cell 40, 63-74
20932475   Curated Info

14

Barisic S, Schmidt C, Walczak H, Kulms D (2010) Tyrosine phosphatase inhibition triggers sustained canonical serine-dependent NFkappaB activation via Src-dependent blockade of PP2A. Biochem Pharmacol 80, 439-47
20450893   Curated Info

15

Wang H, Moreau F, Hirota CL, MacNaughton WK (2010) Proteinase-activated receptors induce interleukin-8 expression by intestinal epithelial cells through ERK/RSK90 activation and histone acetylation. FASEB J 24, 1971-80
20065107   Curated Info

16

Rikova K (2010) CST Curation Set: 9756; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

17

Rikova K (2010) CST Curation Set: 9764; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

18

Rikova K (2010) CST Curation Set: 9757; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

19

Rikova K (2010) CST Curation Set: 9767; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

20

Moritz A (2010) CST Curation Set: 9234; Year: 2010; Biosample/Treatment: cell line, MKN-45/calyculin_A & pervanadate; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

21

Higashimoto T, Chan N, Lee YK, Zandi E (2008) Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by Polo-like kinase 1. J Biol Chem 283, 35354-67
18957422   Curated Info

22

Ho TC, et al. (2008) 15-deoxy-Delta(12,14)-prostaglandin J2 induces vascular endothelial cell apoptosis through the sequential activation of MAPKS and p53. J Biol Chem 283, 30273-88
18718914   Curated Info

23

Dey A, et al. (2008) R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death Differ 15, 263-73
17975552   Curated Info

24

Seldon MP, et al. (2007) Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol 179, 7840-51
18025230   Curated Info

25

Sethi G, Ahn KS, Chaturvedi MM, Aggarwal BB (2007) Epidermal growth factor (EGF) activates nuclear factor-kappaB through IkappaBalpha kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IkappaBalpha. Oncogene 26, 7324-32
17533369   Curated Info

26

Horion J, et al. (2007) Histone deacetylase inhibitor trichostatin A sustains sodium pervanadate-induced NF-kappaB activation by delaying IkappaBalpha mRNA resynthesis: comparison with tumor necrosis factor alpha. J Biol Chem 282, 15383-93
17409387   Curated Info

27

Rueda D, et al. (2007) Bcl10 controls TCR- and FcgammaR-induced actin polymerization. J Immunol 178, 4373-84
17371994   Curated Info

28

Chiu TT, et al. (2007) Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol 292, C767-77
16928771   Curated Info

29

Blonska M, et al. (2007) The CARMA1-Bcl10 signaling complex selectively regulates JNK2 kinase in the T cell receptor-signaling pathway. Immunity 26, 55-66
17189706   Curated Info

30

Kammanadiminti SJ, Chadee K (2006) Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281, 26112-20
16840786   Curated Info

31

Gloire G, et al. (2006) Restoration of SHIP-1 activity in human leukemic cells modifies NF-kappaB activation pathway and cellular survival upon oxidative stress. Oncogene 25, 5485-94
16619039   Curated Info

32

Dolcet X, et al. (2006) Proteasome inhibitors induce death but activate NF-kappaB on endometrial carcinoma cell lines and primary culture explants. J Biol Chem 281, 22118-30
16735506   Curated Info

33

Mattioli I, et al. (2006) Inducible phosphorylation of NF-kappa B p65 at serine 468 by T cell costimulation is mediated by IKK epsilon. J Biol Chem 281, 6175-83
16407239   Curated Info

34

Song YJ, et al. (2006) IL-1 receptor-associated kinase 1 is critical for latent membrane protein 1-induced p65/RelA serine 536 phosphorylation and NF-kappaB activation. Proc Natl Acad Sci U S A 103, 2689-94
16477006   Curated Info

35

Hu J, Haseebuddin M, Young M, Colburn NH (2005) Suppression of p65 phosphorylation coincides with inhibition of IkappaBalpha polyubiquitination and degradation. Mol Carcinog 44, 274-84
16163708   Curated Info

36

Kasperczyk H, et al. (2005) Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy. Oncogene 24, 6945-56
16007147   Curated Info

37

Minhajuddin M, et al. (2005) Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells. J Immunol 174, 5823-9
15843586   Curated Info

38

Mattioli I, et al. (2004) Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172, 6336-44
15128824   Curated Info

39

Courtois G, et al. (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112, 1108-15
14523047   Curated Info

40

Jiang X, et al. (2003) The NF-kappa B activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536. J Biol Chem 278, 919-26
12419817   Curated Info

41

Nair A, et al. (2003) NF-kappaB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene 22, 50-8
12527907   Curated Info

42

Fan C, Yang J, Engelhardt JF (2002) Temporal pattern of NFkappaB activation influences apoptotic cell fate in a stimuli-dependent fashion. J Cell Sci 115, 4843-53
12432072   Curated Info

43

Schubert SY, Neeman I, Resnick N (2002) A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J 16, 1931-3
12368228   Curated Info

44

Kim BY, et al. (2002) Constitutive activation of NF-kappaB in Ki-ras-transformed prostate epithelial cells. Oncogene 21, 4490-7
12085227   Curated Info

45

Kim MO, et al. (2002) Interferon-beta activates multiple signaling cascades in primary human microglia. J Neurochem 81, 1361-71
12068083   Curated Info

46

Matata BM, Galiñanes M (2002) Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem 277, 2330-5
11706022   Curated Info

47

Huang Y, Fan W (2002) IkappaB kinase activation is involved in regulation of paclitaxel-induced apoptosis in human tumor cell lines. Mol Pharmacol 61, 105-13
11752211   Curated Info

48

Brandes LM, Lin ZP, Patierno SR, Kennedy KA (2001) Reversal of physiological stress-induced resistance to topoisomerase II inhibitors using an inducible phosphorylation site-deficient mutant of I kappa B alpha. Mol Pharmacol 60, 559-67
11502888   Curated Info

49

Deng L, et al. (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-61
11057907   Curated Info

50

Huynh QK, et al. (2000) Characterization of the recombinant IKK1/IKK2 heterodimer. Mechanisms regulating kinase activity. J Biol Chem 275, 25883-91
10823818   Curated Info

51

Schoonbroodt S, et al. (2000) Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J Immunol 164, 4292-300
10754328   Curated Info

52

Bren GD, Pennington KN, Paya CV (2000) PKC-zeta-associated CK2 participates in the turnover of free IkappaBalpha. J Mol Biol 297, 1245-58
10764587   Curated Info

53

Peters RT, Liao SM, Maniatis T (2000) IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex. Mol Cell 5, 513-22
10882136   Curated Info

54

Taylor JA, et al. (1999) Serine 32 and serine 36 of IkappaBalpha are directly phosphorylated by protein kinase CKII in vitro. J Mol Biol 290, 839-50
10398585   Curated Info

55

Winston JT, et al. (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13, 270-83
9990852   Curated Info

56

Heilker R, et al. (1999) All three IkappaB isoforms and most Rel family members are stably associated with the IkappaB kinase 1/2 complex. Eur J Biochem 259, 253-61
9914500   Curated Info

57

Sylla BS, et al. (1998) Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc Natl Acad Sci U S A 95, 10106-11
9707608   Curated Info

58

Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2, 233-9
9734360   Curated Info

59

Mercurio F, et al. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278, 860-6
9346484   Curated Info

60

DiDonato JA, et al. (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388, 548-54
9252186   Curated Info

61

Rodriguez MS, et al. (1996) Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. Oncogene 12, 2425-35
8649784   Curated Info

62

DiDonato J, et al. (1996) Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 16, 1295-304
8657102   Curated Info

63

Baldi L, Brown K, Franzoso G, Siebenlist U (1996) Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha. J Biol Chem 271, 376-9
8550590   Curated Info

64

Scherer DC, et al. (1995) Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A 92, 11259-63
7479976   Curated Info

65

Traenckner EB, et al. (1995) Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J 14, 2876-83
7796813   Curated Info

66

Brockman JA, et al. (1995) Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 15, 2809-18
7739562   Curated Info

67

Brown K, et al. (1995) Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485-8
7878466   Curated Info